Ι

前言

感谢您使用深圳市易驱电气有限公司生产的 MINI 系列高性能矢量控制变频器。

MINI 系列变频器是深圳市易驱电气有限公司在 ED3100 系列的基础上开发的一款小体积变频器。具有电机参数自辩识、模拟量电流输出、开关量输出、RS485 通讯等一系列实用、先进的功能。为设备制造商和终端客户提供了集成度高的一体化解决方案,对降低系统的采购和运营成本、缩小设备体积具有极大的帮助。

在使用变频器之前,请仔细阅读使用说明书,以确保能正确安装和操作、使变频器发挥其最佳性能,本说明书描述不够详细的地方可参阅我公司 ED3100 系列说明书。

本说明书如有改动,请以新版为准,恕不另行通知。

MINI 系列高性能矢量变频器用户手册

销售热线:13916183699

II

一目 录一

第一章	概 要
	1.1 产品确认(1-1)
	1.2 安全注意事项(1-2)
	1.3 使用注意事项
	1.4 关于防护等级
第二章	产品安装及配线
	2.1 变频器系列型号 (2-1)
	2.2 产品技术规范 (2-1)
	2.3 外型尺寸(2-2)
	2.4 变频器的安装环境 (2-3)
	2.5 变频器配线的注意事项 (2-4)
	2.6 基本运行配线图 (2-4)
	2.7 端子功能说明(2-6)
	2.8 键盘的使用说明 ····· (2-10)
第三章	功能参数表
	3.1 表中符号说明(3-1)
	3.2 功能参数表 (3-1)
第四章	参数使用详细说明
	4.1 基本运行参数组 (P0.00-P0.23) ····· (4-1)
	4.2 电机与矢量控制参数组 (P1.00-P1.15) ······(4-11)
	4.3 辅助运行参数组 (P2.00-P2.43) ·····(4-14)
	4.4 用户管理界面参数组(P3.00-P3.09) ·····(4-23)

	4.5 开关量输入输出参数组 (P4.00-P4.16) ····································	(4-25)
	4.6 模拟输入输出参数组 (P5.00-P5.16) ······	(4-35)
	4.7 过程 PID 控制参数组 (P6.00-P6.14) ······	(4-41)
	4.8 可编程运行参数组(P7.00-P7.18) ······	(4-49)
	4.9 通讯参数组(P8.00-P8.04)	(4-51)
	4.10 保护参数 (P9.00-P9.03) ······	(4-58)
	4.11 高级功能参数(PA.00-PA.08)	(4-61)
第五章	故障诊断及处理	
	5.1 故障现象及对策·····	(5-1)
	5.2 故障记录查询	(5-1)
	5.3 故障复位	(5-1)
第六章	保养和维护	
	6.1 日常保养及维护	(6-1)
	6.2 定期保养及维护	(6-1)
	6.3 变频器的保修	(6-2)
	IINI 通讯协议······	
附录二 高	高速脉冲输入、输出端口使用说明	(8-1)

第一章 概 要

1.1 产品确认

开箱时,请认真确认:在运输中是否有破损或刮伤损坏现象,本机铭牌的额 定值是否与您的订货要求一致。

如发现有不良情况请与供货商或直接与我公司联系。

变频器型号说明:

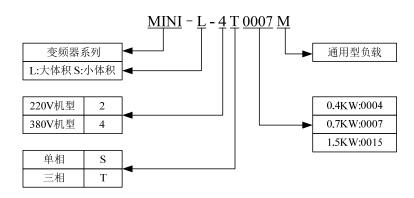


图 1-1 变频器型号说明

在变频器机箱的右侧板下方,贴有标示变频器型号及额定值的铭牌,内容如下:

图 1-2 变频器铭牌

MINI 系列高性能矢量变频器用户手册

1.2 安全注意事项

● 拿到产品时的确认

1. **受损的变频器及缺少零部件的变频器,切勿安装。** 有受伤的危险。

● 安装

注 音

- 1. 搬运时,请托住机体的底部。 只拿住面板,有主体落下砸脚受伤的危险。
- **2. 请安装在金属等不易燃烧的材料板上。** 安装在易燃材料上,有火灾的危险。
- 3. 两台以上的变频器安装在同一控制柜内时,请设置冷却风扇,并使进风口的空气温度保持在 40℃以下。由于过热,会引起火灾及其它事故。
 - 接线

危 险

- 1. 接线前,请确认输入电源已切断。
 - 有触电和火灾的危险。
- **2.** 请电气工程专业人员进行接线作业。 有触电和火灾的危险。
- 3. 接地端子一定要可靠接地。
 - 有触电的危险。

1-2

- **4. 紧急停车端子接通后,一定要检查其动作是否有效。** 有受伤的危险。(接线责任由使用者承担)
- 5. 请勿直接触摸输出端子,变频器的输出端子切勿与外壳连接,输出端子之间切勿短接。

有触电及引起短路的危险。

MINI 系列高性能矢量变频器用户手册

销售热线:13916183699

- 1. **请确认交流主回路电源与变频器的额定电压是否一致。** 有受伤和火灾的危险。
- 2. 请勿对变频器进行耐电压试验。 会造成半导体元器件等的损坏。
- **3. 请按接线图连接制动电阻或制动单元。** 有火灾的危险。
- **4. 请用指定力矩的螺丝刀紧固端子。** 有火灾的危险。
- 5. 请勿将输入电源线接到输出 U、V、W 端子上。 电压加在输出端子上,会导致变频器内部损坏。
- 6. 请勿将移相电容及 LC/RC 噪声滤波器接入输出回路。 会导致变频器内部损坏。
- 7. 请勿将电磁开关、电磁接触器接入输出回路。 变频器在带负载运行时,电磁开关、电磁接触器动作产生的浪涌电 流会引起变频器的过电流保护回路动作。

● 保养、检查

- 1. **请勿触摸变频器的接线端子,端子上有高电压。** 有触电的危险。
- **2. 通电前,请务必安装好面板,拆卸面板时,一定要断开电源。** 有触电的危险。
- **3. 非专业技术人员,请勿进行保养、检查工作。** 有触电的危险。

MINI 系列高性能矢量变频器用户手册

1. 键盘板、控制电路板、驱动电路板上安装了 CMOS 集成电路,使用时请特别注意。

用手指直接触摸电路板,静电感应可能会损坏电路板上的集成芯片。

2. 通电中,请勿变更接线及拆卸端子接线。 运行中,请勿检查信号。会损坏设备。

1.3 使用注意事项

1.3.1 在 50Hz 以上频率运行

若超过 50Hz 运行,除了考虑电机的振动、噪音增大外,还必须确保电机轴承及机械装置的使用速度范围,务必事先查询。

1.3.2 海拔高度与降额使用

在海拔高度超过 1000 米的地区,由于空气稀薄造成变频器的散热效果变差,有必要降额使用。如图 1-3 所示为变频器的额定电流与海拔高度的关系曲线。

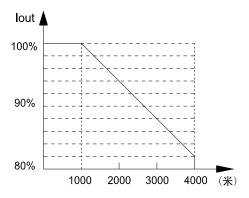


图 1-3 变频器额定输出电流与海拔高度降额使用图

1.4 关于防护等级

1-4

MINI 系列变频器的防护等级 IP20 是指在使用状态或键盘显示情况下达到的。

MINI 系列高性能矢量变频器用户手册

销售热线:13916183699

第二章 产品规范及订货须知

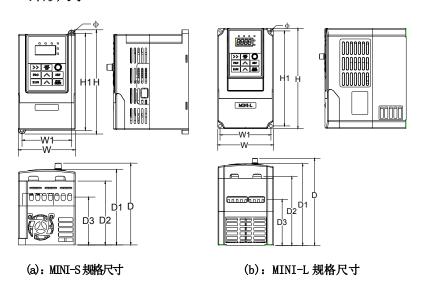
2.1 变频器系列型号

MINI 系列变频器有 220V 和 380V 两种电压等级。适配电机功率范围为: 0.4-1.5KW。MINI 系列变频器的型号如表 2-1 所示。

表 2-1 MINI 系列变频器的型号

电压等级	变频器型号	额定输出电流 (A)	适配电机 (KW)
	MINI-4T0004M	1.5	0. 4
380V 三相	MINI-4T0007M	2. 3	0.75
3801 二相	MINI-4T0015M	3. 7	1.5
	MINI-4T0022M	5. 5	2. 2
220V	MINI-2S0004M	3. 0	0. 4
	MINI-2S0007M	5. 0	0.75
单相	MINI-2S0015M	7. 5	1. 5

备注: 220V 电压系列其他规格可以按照用户要求进行非标生产。


2.2 产品技术规范

项目		标准规范		
输入	输入电压	单相220V、三相 380V; 50Hz/60Hz		
和八	变动容许值	电压: -20% ~ +20% 电压失衡率: <3%		
#A.II	额定电压	0~220V/0~380V		
輸出	频率范围	0Hz~400Hz		
	调制方式	优化空间电压矢量PWM		
	控制方式	无速度传感器矢量控制		
	频率精度	数字设定: 最高频率×±0.01%; 模拟设定: 最高频率×±0.2%		
主要	频率分辨率	数字设定: 0.01Hz; 模拟设定: 最高频率×0.1%		
控制	转矩提升	自动转矩提升,手动转矩提升1%~30.0%(V/F模式)		
功能	V/F曲线	线性V/F曲线、平方V/F曲线、用户自定义V/F曲线		
	内置PID	方便地构成闭环控制系统,适用于压力、流量控制		
	多段速运行	通过内置PLC或控制端子实现多段速运行		

MINI 系列高性能矢量变频器用户手册

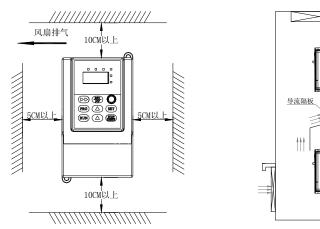
项目		标准规范
无感	转矩特性	1HZ时输出额定转矩的150%,转速稳定精度0.1%
矢量 控制	电机参数自辨识	在电机完全静止的情况下自动辨识电机参数,以获得最佳控制效果
	运行命令通道	操作面板给定;控制端子给定;串行口给定;可三种方式切换
	频率设定通道	键盘电位器给定;键盘▲、▼键给定;数字给定;串行给定;端子UP/DOWN给定;模拟信号给定;组合给定
运行	开关输入通道	正、反转指令;6路可编程开关量输入,最多可设定30种功能。
功能	模拟输入通道	2路模拟信号输入,0~20mA、0~10V可选
	模拟输出通道	模拟信号输出0~10V、0~20mA可选
	开关量输出通道	3路可编程开路集电极输出;1路继电器输出信号;
操作 面板	LED数码显示	可显示设定频率、输出电压、输出电流等参数
保护功		过流保护; 过压保护; 欠压保护; 过热保护; 过载保护等

2.3 外形尺寸

MINI 系列高性能矢量变频器用户手册

表 2-2 变频器外形及安装系列尺寸

规格	W	W1	Н	H1	Н2	D	D1	D2	D3	安装孔 直径	参照图
MINI-S	85	74	155	144		122	112	95	71	5	(a)
MINI-L	98	89	175	166		152	142.5	120	80	4. 5	(b)


2.4 变频器的安装环境

2.4.1 安装环境要求

- (1) 安装在通风良好的室内场所,环境温度要求在-10°C~40°C 的范围内,如温度超过 40°C 时,需外部强制散热或者降额使用。
- (2) 避免安装在阳光直射、多尘埃、有飘浮性的纤维及金属粉末的场所。
- (3) 严禁安装在有腐蚀性、爆炸性气体的场所。湿度低于 95%RH, 无水珠凝结。 尽量远离电磁干扰源和对电磁干扰敏感的其它电子仪器设备。
- (4) 安装在平面固定振动小于 5.9 米/秒² 的场所。

2.4.2 安装方向与空间

- (1) 一般情况下应立式安装。
- (2) 安装间隔及距离最小要求,如图 2-2 所示。
- (3) 多台变频器采用上下安装时,中间应用导流隔板,如图 2-3 所示。

销售热线:13916183699

图 2-2 安装的间隔距离图

图 2-3 多台变频器的安装示意图

2.5 变频器配线的注意事项

2.5.1 变频器与选配件的连接

- (1) 在供电电网和变频器之间,安装隔离开关等分断装置,用于在设备 维修时的人身安全和强制断电。
- (2) 变频器供电回路必须安装有过流保护作用的快熔丝或断路器,避免故障范围扩大。

2.6 基本运行配线图

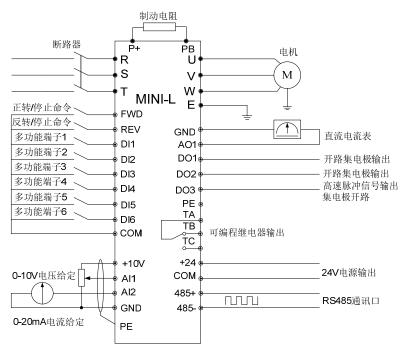


图 2-4 MINI-L 基本运行配线图

提示:

2-4

1. AI2 可以选择电压或者电流信号输入,由控制板上的三档二位 开关 JP1 的位置切换。

MINI 系列高性能矢量变频器用户手册

销售热线:13916183699

- 2. A01 可以选择输出电压或者电流信号,由控制板上的三档二位 开关 JP2 的位置切换。
- 3. 以上为 MINI-LMB 的接线图,MINI-SMB 为 MINI-LMB 的精简版部分功能取消,见图 2-4
- 4. D03 和通讯均为非标功能,需要订货时特别声明。

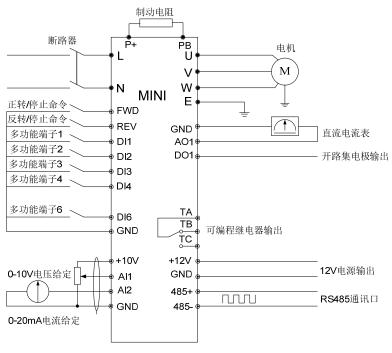


图 2-5 MINI-S 运行配线图

提示:

- 1. AI2 可以选择电压或者电流信号输入,由控制板上的三档二位 开关 JP1 的位置切换。
- 2. A01 可以选择输出电压或者电流信号,由控制板上的三档二位 开关 JP2 的位置切换。
- 3. 通讯为非标功能,需要订货时特别声明。

2.7 端子功能说明,如下表所示

MINI-L 系列

类别	端子 标号	名称	端子功能说明	规格
通讯	485+ 485-	RS485 通讯口	RS485 差分信号正端 RS485 差分信号负端	标准 RS485 通讯接口, 请使用双绞线或屏蔽线
多功能输出端子	D01 D02	开路集电极 输出端子	可编程定义为多种功能的开 关量输出端子,详见 端子 功 能参数 P4.07、P4.08 输出端 子功能介绍。 (公共端: COM)	光耦隔离输出 工作电压范围:9~30V 最大输出电流:50mA
高速输出端子	D03	高速光耦输 出	可对应输出频率、输出电流、 电机转速、输出电压等物理量 输出 0-20KHZ 的脉冲信号。 (详见 P5. 10 说明)	光耦隔离输出 工作电压范围:24V 最大输出电流:50mA (需外接上拉电阻)
继电器 输出端子	TA. TB. TC	可编程继电 器端子输出	正常: TA-TB 常闭; TA-TC 常 开 动作时: TA-TB 常开; TA-TC 常闭 (详见 P4. 09 说明)	触点额定值 NO: 5A 250VAC NC: 3A 250VAC
模拟量输入1	AI1	模拟量输入 AI1	接受模拟电压量输入 (参考地: GND)	输入电压范围: 0 [~] 10V (输入阻抗: 47KΩ) 分辨率: 1/1000
模拟量输入2	AI2	模拟量输入 AI2	接受模拟电流、电压量输入 ,由控制端子左边拨码开关 JP1 选择(参考地: GND)	输入电流范围: 0~20mA (输入阻抗: 500Ω) 分辨率: 1/1000
模拟量输出	A01	模拟量输出 A01	提供模拟电压量输出,可对应 8种物理量,出厂默认输出频 率。(参考地: GND)	电压输出范围: 0~10V
运行控 制端子	FWD	正转命令	正转开关量命令 (公共端 : COM)	光耦隔离输入阻抗: R=2KΩ,最高输入频 率:200Hz输入电压 范围 9~30V
运行控 制端子	REV	反转命令	反转开关量命令 (公共端 : COM)	光耦隔离输入阻抗: R=2KΩ,最高输入频 率:200Hz 输入电压 范围 9~30V

类别	端子标号	名称	端子功能说明	规格
多功能 输入端 子 1	DI1	多功能输入 端子1	可编程定义为多种功能的开关量输入端子,详见第四章端子功能参数(开关量输入输出)输入端子功能介绍. (公共端: COM)	光耦隔离输入阻抗: R=2KΩ,最高输入频率:200Hz 输入电压 范围 9~30V
多功能 输入端 子 2	DI2	多功能输入 端子 2	可编程定义为多种功能的开关量输入端子,详见第四章端子功能参数(开关量输入输出)输入端子功能介绍. (公共端: COM)	光耦隔离输入阻抗: R=2KΩ,最高输入频率:200Hz 输入电压 范围 9~30V
多功能 输入端 子 3	DI3	多功能输入 端子3	可编程定义为多种功能的开关量输入端子,详见第四章端子功能参数(开关量输入输出)输入端子功能介绍. (公共端: COM)	光耦隔离输入阻抗: R=2KΩ,最高输入频率:200Hz 输入电压 范围 9~30V
多功能 输入端 子 4	DI4	多功能输入 端子 4	可编程定义为多种功能的开关量输入端子,详见第四章端子功能参数(开关量输入输出)输入端子功能介绍. (公共端: COM)	光耦隔离输入阻抗: R=2KΩ,最高输入频率:200Hz 输入电压 范围 9~30V
多功能 输入端 子 5	DI5	多功能输入 端子 5	可编程定义为多种功能的开关量输入端子,详见第四章端子功能参数(开关量输入输出)输入端子功能介绍. (公共端: COM)	光耦隔离输入阻抗: R=2KΩ,最高输入频率:200Hz 输入电压 范围 9~30V
多功能 输入端 子 6	DI6	多功能输入 端子 6	可作为脉冲信号输入端口 (公共端: COM)	光耦隔离输入阻抗: R=2KΩ,最高输入频 率:20KHz 输入电压 范围 9~30V
电源	+10V	+10V 电源	对外提供+10V 电源 (参考地: GND)	最大输出电流:50mA
参考地	GND	+10V 电源公 共端	模拟信号和+10V 电源的参考地	COM 和 GND 两者之间 相互内部隔离
电源	+24V	+24V 电源	数字信号电源(参考地: COM)	最大输出电流:50mA
参考地	COM	+24V 电源公 共端	数字信号输入,输出公共端	COM 和 GND 两者之间 相互内部隔离

MINI-S 系列

类别	端子 标号	名称	端子功能说明	规格
通讯	485+ 485-	RS485 通讯口	RS485 差分信号正端 RS485 差分信号负端	标准 RS485 通讯接口, 请使用双绞线或屏蔽 线
多功 能输 出端 子	DO1	开路集电极输 出端子	可编程定义为多种功能的开 关量输出端子,详见 端子 功 能参数 P4.07、P4.08 输出端 子功能介绍。 (公共端: GND)	光耦隔离输出 工作电压范围:9~30V 最大输出电流:50mA
继电 器输 出端 子	TA. TB TC	可编程继电器 端子输出	正常: TA-TB 常闭; TA-TC 常 开 动作时: TA-TB 常开; TA-TC 常闭 (详见 P4. 09 说明)	触点额定值 NO: 5A 250VAC NC: 3A 250VAC
模拟 量输 入1	AI1	模拟量输入 AI1	接受模拟电压量输入 (参考地: GND)	输入电压范围: 0~10V (输入阻抗: 47KΩ) 分辨率: 1/1000
模拟 量输 入 2	AI2	模拟量输入 AI2	接受模拟电流、电压量输入 (参考地: GND), 由控制端子左 边拨码开关 JP1 选择	输入电流范围: 0~20mA (输入阻抗: 500Ω) 分辨率: 1/1000
模拟 量输 出	A01	模拟量输出 A01	提供模拟电压量输出,可对应 8 种物理量,出厂默认输出频 率。(参考地: GND)	电压输出范围: 0~10V
运行 控制 端子	FWD	正转命令	正转开关量命令 (公共端 : GND)	光耦隔离输入阻抗: $R=2K\Omega$,最高输入频率:200Hz 输入电压范围 $9\sim30V$
运行 控制 端子	REV	反转命令	反转开关量命令 (公共端 : GND)	光耦隔离输入阻抗: R=2KΩ,最高输入频 率:200Hz 输入电压 范围 9~30V

类别	端子 标号	名称	端子功能说明	规格
多功 能输 入端 子1	DI1	多功能输入端 子 1	可编程定义为多种功能的开关量输入端子,详见第四章端子功能参数(开关量输入输出)输入端子功能介绍.(公共端: GND)	光耦隔离输入阻抗: R=2KΩ,最高输入频率:200Hz 输入电压 范围 9~30V
多功能 输入端 子 2	DI2	多功能输入端 子 2	可编程定义为多种功能的开 关量输入端子,详见第四章端 子功能参数(开关量输入输 出)输入端子功能介绍. (公共端: GND)	光耦隔离输入阻抗: R=2KΩ,最高输入频率:200Hz 输入电压 范围 9~30V
多功能 输入端 子3	DI3	多功能输入端子3	可编程定义为多种功能的开 关量输入端子,详见第四章端 子功能参数(开关量输入输 出)输入端子功能介绍. (公共端: GND)	光耦隔离输入阻抗: R=2KΩ,最高输入频 率:200Hz 输入电压 范围 9~30V
多功能 输入端 子 4	DI4	多功能输入端子4	可编程定义为多种功能的开 关量输入端子,详见第四章端 子功能参数(开关量输入输 出)输入端子功能介绍. (公共端: GND)	光耦隔离输入阻抗: R=2KΩ,最高输入频率:200Hz 输入电压 范围 9~30V
多功能 输入端 子 6	DI6	多功能输入端 子 6	可作为脉冲信号输入端口 (公共端: GND)	光耦隔离输入阻抗: R=2KΩ,最高输入频 率:20KHz 输入电压 范围 9~30V
电源	+10V	+10V 电源	对外提供+10V 电源(参考地: GND)	最大输出电流:50mA
电源	+12V	+12V 电源	对外提供+12V 电源(参考地: GND)	最大输出电流:50mA
参考地	GND	电源公共端	+10V/+12V 电源的参考地	

2.8 键盘的使用说明

操作键盘根据显示内容和接受指令的不同,可分为5种工作模式:

①状态监控模式

状态监控模式是操作键盘在大多数情况下的工作模式。在任何情况下,只要连续 1 分钟无按键输入,操作键盘都会自动回到状态监控模式。

②监控参数查看模式

在该模式下,按 ▲/▼ 键可以选择需要监控的数据状态,如输出电压、输出频率、输出电流等。

正常情况下,d-00 为系统默认监控参数。如需要长期监控其它参数,可通过功能参数 P3.04,P3.05 选择。

③功能参数查看模式

在该模式下,按 ▲/▼ 键或配合 ▶▶ 键可以选择需要查看或修改的功能参数,如 P0. 08, P5. 02 等。

④功能参数待修改模式

⑤数字设定频率的待修改模式

当 P0.01 选择为键盘数字给定时,在状态监控模式下,按▲/▼ 键可以进入该模式并进行修改。

以上前五种状态通过 PRG / SET 键切换, 其顺序为:

状态监控模式→按PRG 键→监控参数查看模式→按PRG 键→功能参数查看模式→按SET 键→功能参数待修改模式

状态监控模式(P0.01 选择为键盘数字给定)→按 ▲/▼ 键→数字设定频率的待修 改模式

MINI 系列高性能矢量变频器用户手册

第三章 功能参数表

3.1 表中符号说明:

×一表示该参数在运行过程中不能更改 O一表示该参数在运行过程中可以更改

3.2 功能参数表:

参数编号	名 称	设定范围	最小 单位	出厂值	更改					
	基本运行参数 P0 组									
P0. 00	控制方式	0: 开环矢量控制(SVC) 1: V/F 控制	1	1	×					
P0. 01	频率给定通道选择	 键盘电位器给定 数字给定 1,操作面板▲、▼键或数字编码器调节 数字给定 2,端子 UP/DOWN 调节 数字给定 3,通讯给定 AI1 模拟给定 (0~10V) AI2 模拟给定 (0~20mA) 端子脉冲 (0~10KHZ) 组合设定 外部端子选择 	1	1	0					
P0. 02	数字频率控制	LED 个位: 掉电存储 0: 存储 1: 不存储 LED 十位: 停机保持 0: 保持 1: 不保持 LED 百、千位: 保留 注: 仅对 P0. 01=1、2、3	1	00	0					
P0. 03	运行频率数字设定	0.00~上限频率	0.01Hz	50.00Hz	0					
P0. 04	运行命令通道选择	0: 操作键盘运行命令通道1: 端子运行命令通道2: 通讯运行命令通道	1	0	0					
P0. 05	运转方向设定	0: 正转 1: 反转 2:反转防止	1	0	0					

MINI 系列高性能矢量变频器用户手册

3-1

销售热线:13916183699

参数 编号	名 称	设定范围	最小 单位	出厂值	更改
P0.06	上限频率	【PO. 07】 ∼400. 00Hz	0.01Hz	50.00Hz	×
P0. 07	下限频率	0.00∼【P0.06】	0.01Hz	00.00Hz	×
P0. 08	基本运行频率	1.00~上限频率	0.01Hz	50.00Hz	×
P0. 09	最大输出电压	200~500V 100~250V	1	380V 220V	×
P0. 10	机型选择	0: M型(恒转矩负载机型)	1	0	×
P0. 11	转矩提升选择	0: 手动 1: 自动	1	0	×
P0. 12	转矩提升设置	0.0~30.0% 注:仅当 P0.11=0 时有效	0. 1	机型设定	0
P0. 13	转差频率补偿	0.0~150.0%	0.1	0.0	0
P0. 14	加速时间1	0.1~3600 注:缺省单位秒;加减速时间单位	0. 1	机型设定	0
P0. 15	减速时间1	选择见 P3. 09	0. 1	机型设定	0
P0. 16	V/F 曲线设定	0: 恒转矩 1: 降转矩曲线1(1.7次幂) 2: 降转矩曲线2(2.0次幂) 3:用户设定V/F曲线(由P0.17~ P0.22确定)	1	0	×
P0. 17	V/F 频率值 F1	0.00~频率值 F2	0.01Hz	12.50Hz	×
P0. 18	V/F 电压值 V1	0.0∼电压值 V2	0.1%	25.0%	×
P0. 19	V/F 频率值 F2	频率值 F1~频率值 F3	0.01Hz	25. 00Hz	×
P0. 20	V/F 电压值 V2	电压值 V1~电压值 V3	0.1%	50.0%	×
P0. 21	V/F 频率值 F3	频率值 F2~基本运行频率	0.01Hz	37.50Hz	×
P0. 22	V/F 电压值 V3	电压值 V2~100.0%	0.1%	75.0%	×
P0. 23	REV/JOG 功能选择	0: REV 1: JOG	1	1	0

参数 编号	名 称	设定范围	最小 单位	出厂值	更改				
电机与矢量控制参数									
P1. 00	电机额定电压	380V: 200~500V 220V: 100~250V	1V	380V 220V	0				
P1. 01	电机额定电流	0. 1∼600. 0A	0. 1A	机型设定	0				
P1. 02	电机额定转速	300~3000RPM	1RPM	机型设定	×				
P1. 03	电机额定频率	1.00∼400.00Hz	0.01Hz	50.00Hz	×				
P1. 04	电机空载电流	0. 1∼500. 0A	0. 1A	机型设定	0				
P1. 05	电机定子电阻	0.001~10.000 Ω	0.001	机型设定	×				
P1. 06	电机转子电阻	0.001~10.000 Ω	0.001	机型设定	×				
P1. 07	电机定,转子电感	0.01∼600.00mH	0.01mH	机型设定	×				
P1. 08	电机定,转子互感	0.01∼600.00mH	0.01mH	机型设定	×				
P1. 09	保留								
P1. 10	转差补偿系数	0. 50-2. 00	0.01	1.00	0				
P1. 11	电机预励磁选择	0:条件有效 1:一直有效	1	0	×				
P1. 12	电机预励磁持续时间	0~10S	0. 1	0. 2S	×				
P1. 13	电机参数自学习	0: 不动作 1: 静态自学习(仅当 P0.00 为 0 时有效)	1	0	×				
P1. 14	速度环(ASR)比例增 益	0.01~5.00	0. 01	1.00	0				
P1. 15	速度环(ASR)积分时 间常数	0.01~10.00S	0.01S	2. 00S	0				
		辅助运行参数							
P2. 00	起动方式	0: 起动频率起动1: 转速跟踪起动	1	0	×				
P2. 01	起动频率	0.00∼10.00Hz	0.01Hz	1.00Hz	0				
P2. 02	起动频率保持时间	0.0∼10.0s	0.1s	0.0s	×				
P2. 03	起动直流制动电流	0.0~100.0%	0.1%	0.0%	0				

参数 编号	名 称	设定范围	最小 单位	出厂值	更
P2. 04	起动直流制动时间	0.0: 直流制动不动作 0.1~30.0s	0.1s	0.0s	
P2. 05	加减速方式	0: 直线加减速 1: S 曲线加减速	1	0	
P2. 06	S 曲线起始段时间 比例	10.0~40.0%	0.1%	20.0%	
P2. 07	S 曲线上升/下降段 时间比例	10.0~80.0%	0.1%	60.0%	
P2. 08	AVR 功能	0: 禁止 1: 有效	1	1	
P2. 09	自动节能运行	0: 禁止 1: 允许	1	0	
P2. 10	正反转死区时间	0.1∼10.0s	0.1s	0.0s	
P2. 11	停机方式	0: 减速停机 1: 自由停机	1	0	
P2. 12	停机直流制动起始 频率	0.00∼20.00Hz	0.01Hz	机型设定	
P2. 13	停机直流制动电流	0.0~100.0%	0.1%	机型设定	
P2. 14	停机直流制动时间	0: 直流制动不动作 0.1~30.0s	0.1s	机型设定	
P2. 15	停电再起动设置	 禁止 常规起动 转速追踪起动 	1	0	
P2. 16	停电再起动等待时间	0.0∼20.0s	0.1s	0.5s	
P2. 17	故障自动复位次数	0~10	1	0	
P2. 18	故障自动复位间隔 时间	0.5∼25.0s	0.1s	3.0s	
P2. 19	点动运行频率设定	0.00∼50.00Hz	0.01Hz	10.00Hz	
P2. 20	点动加速时间设定	0.1~3600	0.1s	机型设定	
P2. 21	点动减速时间设定	注: 缺省单位秒; 加减速时间单位选择见 P3.09	0.1s	机型设定	
P2. 22	加速时间2	0.1~3600	0.1s	机型设定	
P2. 23	减速时间 2	注:缺省单位秒;加减速时间单位选择见P3.09	0.1s	机型设定	

MINI 系列高性能矢量变频器用户手册

参数编号	名 称	设定范围	最小 单位	出厂值	更改
P2. 24	加速时间3	0.1~3600 注:缺省单位秒:加减速时间单	0.1s	机型设定	0
P2. 25	减速时间3	在: 峽省平位抄; 加减速时间平位选择见 P3.09	0.1s	机型设定	0
P2. 26	加速时间 4	0.1~3600	0.1s	机型设定	0
P2. 27	减速时间 4	注: 缺省单位秒; 加减速时间单位选择见 P3.09	0.1s	机型设定	0
P2. 28	多段速频率1	0.00~上限频率	0.01Hz	5.00Hz	0
P2. 29	多段速频率 2	0.00~上限频率	0.01Hz	10.00Hz	0
P2. 30	多段速频率 3	0.00~上限频率	0.01Hz	15.00Hz	0
P2. 31	多段速频率 4	0.00~上限频率	0.01Hz	20.00Hz	0
P2. 32	多段速频率 5	0.00~上限频率	0.01Hz	25.00Hz	0
P2. 33	多段速频率 6	0.00~上限频率	0.01Hz	30.00Hz	0
P2. 34	多段速频率 7	0.00~上限频率	0.01Hz	40.00Hz	0
P2. 35	保留				
P2. 36	跳跃频率 1	0.00~上限频率	0.01Hz	0.00Hz	0
P2. 37	跳跃范围1	0.0∼10.0Hz	0.01Hz	0.00Hz	0
P2. 38	跳跃频率 2	0.0~上限频率	0.01Hz	0.00Hz	0
P2. 39	跳跃范围 2	0.0∼10.0Hz	0.01Hz	0.00Hz	0
P2. 40	跳跃频率 3	0.0~上限频率	0.01Hz	0.00Hz	0
P2. 41	跳跃范围3	0.0∼10.0Hz	0.01Hz	0.00Hz	0
P2. 42	载波频率设置	1.0∼12.0KHz	0.1KHz	机型设定	0
P2. 43	载波控制方式	0: 固定载波 1: 自动载波调整	1	1	0
		用户管理界面参数			
P3. 00	保留				
P3. 01	参数初始化	0: 无操作 1: 恢复出厂设定 2: 清除故障记录	1	0	×

参数编号	名称	设定范围	最小 单位	出厂值	更改
P3. 02	参数写入保护	0:允许修改所有参数(运行中有些参数不能修改) 1:仅允许修改频率设定 2:所有参数禁止修改注: 以上限制对本参数无效	1	0	0
P3. 03	厂家密码	0~9999	1	0	0
P3. 04	监控参数1选择	0~18	1	0	0
P3. 05	监控参数2选择	0~18	1	1	0
P3. 06	线速度系数	0.01~100.0	0.01	1.00	0
P3. 07	闭环显示系数	0.01~100.0	0.01	1.00	0
P3. 08	软件版本	0~99.99	0.01		×
P3. 09	加减速度时间单位	0: 秒 1: 分	1	0	0
		开关量输入输出			
P4. 00	输入端子 DI1 功能	0: 控制端闲置 1: 多段速选择1 2: 多段速选择2 3: 多段速选择3 4: 加减速时间1	1	0	×
P4. 01	输入端子 DI2 功能	5: 加减速时间 2 6: 频率通道选择 1 7: 频率通道选择 2 8: 频率通道选择 3 9: 正转点动控制 10: 反转点动控制	1	0	×
P4. 02	输入端子 DI3 功能	11: 自由停机控制 12: 频率递增指令 13: 频率递减指令 14: 外部设备故障输入 15: 三线式运转控制 16: 直流制动指令	1	0	×

参数编号	名 称	设定范围	最小 单位	出厂值	更改
P4. 03	输入端子 DI4 功能	17: 计数器清零信号输入 18: 计数器触发信号输入 (仅对 DI6 有效) 19: 外部脉冲输入 (仅对 DI6 有效)	1	0	×
P4. 04	输入端子 DI5 功能	20: 外部复位信号输入 21: UP/DOWN 端子频率清零 22: PID 运行投入 23: 可编程多段速运行投入 24: 摆频运行投入 25: 摆频状态复位	1	0	×
P4. 05	输入端子 DI6 功能	25: 摆频状态复位 26: 外部停机指令 27: 变频器运行禁止指令 28: (保留) 29: 命令切换至端子 30: 频率切换至 AI2 31: 定时开始 32: 定时清零	1	0	×
P4. 06	FWD/REV 端子控制 模式	0: 二线式控制模式 1 1: 二线式控制模式 2 2: 三线式控制模式 1 3: 三线式控制模式 2 (保留)	1	0	×
P4. 07	开路集电极输出端 子 D01 设定	0: 变频器运行中指示 1: 频率/速度到达信号 (FAR) 2: 频率/速度水平检测信号 (FDT)	1	0	0
P4. 08	开路集电极输出端 子 D02 设定	 3: 变频器零转速运行中指示 4: 外部设备故障停机 5: 输出频率到达上限 6: 输出频率到达下限 	1	1	0
P4. 09	可编程继电器输出	7: 可编程多段速运行一个 周期完成 8: 变频器过载报警信号 9: 变频器运行准备就绪	1	12	0

参数编号	名称	设定范围	最小 单位	出厂值	更改
P4. 09	可编程继电器输出	10: 计数器检测信号输出 11: 计数器复位信号输出 12: 变频器故障 13: 欠压封锁停机 14: 摆频上下限限制 15: 可编程多段速阶段运行完成 16: 保留 17: 定时到达输出	1	12	0
P4. 10	FDT 水平设定	0.00Hz~上限频率	0.01Hz	10.00Hz	0
P4. 11	FDT 滞后值	0.0∼30.00Hz	0.1Hz	1.00Hz	0
P4. 12	频率到达 FAR 检测 幅度	0.00Hz∼15.0Hz	0. 01Hz	5. 00Hz	0
P4. 13	过载预报警水平	20~120%	1%	100%	0
P4. 14	过载预报警延时	0.0∼15.0s	0.1s	1.0s	×
P4. 15	计数器复位值设定	【P4.16】∼60000	1	1	×
P4. 16	计数器检测值设定	0∼【P4.15】	1	1	×
		模拟输入输出参数			
P5. 00	AI1 输入下限电压	0.0∼【P5.01】	0. 1V	0. 0V	0
P5. 01	AI1 输入上限电压	【P5.00】 ∼10.0V	0. 1V	10. 0V	0
P5. 02	AI2 输入下限电流	0.0∼【P5.03】	0.1mA	O. OmA	0
P5. 03	AI2 输入上限电流	【P5.02】∼20.0mA	0. 1mA	20. OmA	0
P5. 04	脉冲输入下限频率	0.0∼【P5.05】	0.1KHz	0.0KHz	0
P5. 05	脉冲输入上限频率	【P5.04】 ∼20.0kHz	0.1KHz	10.0KHz	0
P5. 06	最小输入对应设定 频率	0.0Hz~上限频率	0. 01Hz	0.00Hz	0
P5. 07	最大输入对应设定 频率	0.0Hz~上限频率	0.01Hz	50.00Hz	0
P5. 08	模拟输入信号延迟 时间	0. 1∼5. 0s	0.1s	0.5s	0

参数编号	名称	设定范围	最小 单位	出厂值	更改
P5. 09	A01 多功能模拟量 输出端子功能选择	0: 输出频率 1: 设定频率	1	0	0
P5. 10	D03 多功能脉冲输 出端子功能选择	2: 输出电流 3: 电机转速 4: 输出电压 5: 母线电压 6: PID 给定量 7: PID 反馈量	1	2	0
P5. 11	A01 增益设定	20~200%	1%	100%	0
P5. 12	保留				
P5. 13	D03 增益设定	20~200% (额定值 10KHZ)	1%	100%	0
P5. 14	保留				
P5. 15	组合给定通道设置	LED 个位:操作数 1 0:键盘电位器 1:数留 3:通讯给定 4:AI1 5:AI2 6:端子位:操作数 2 0:键盘令定 1 2:保留 3:通讯公定 4:AI1 5:AI2 6:端子位:操作数 2 0:键盘令定 1 2:保留 3:通讯公定 4:AI1 5:AI2 6:端子位:操作数 3 0:键盘令定 1 2:保留 3:通讯给定 4:AI1 5:AI2 6:端子体 接路 1:数字	1	000	×

参数 编号	名称	设定范围	最小 单位	出厂值	更改
P5. 16	组合给定算法 设置	LED 个位: 算法 1 0: 加 1: 减 2: 绝对值(减法) 3: 取最大值 4: 取最小值 LED 十位: 算法 2 0: 加 1: 减 2: 绝对值(减法) 3: 取最大值 4: 取最小值 4: 取最小值 5: 操作数 3 不参与运算 LED 百, 千位: 保留	1	00	0
		过程 PID 参数			
P6. 00	PID 动作设置	LED 个位:功能设置 0: 关闭 1: 打开 LED 十位: PID 投入选择 0: 自动投入 1: 通过定义的多功能端子手动投 LED 百位: 保留 LED 千位: 保留	1	00	×
P6. 01	PID 给定通道选择	0: 键盘电位器	1	1	×
P6. 02	PID 反馈通道选择	1: 数字给定 2: 保留 3: 保留 4: AI1 5: AI2 6: 端子脉冲 7: AI1+AI2 8: AI1-AI2 9: MIN {AI1, AI2} 10:MAX {AI1, AI2}	1	4	×

参数编号	名 称	设定范围	最小 单位	出厂值	更改
P6. 03	给定数字量设定	0.00~10.00V	0. 01V	0. 00V	0
P6. 04	反馈通道增益	0.01~10.00	0.01	1.00	0
P6. 05	反馈通道极性	0: 正 1: 负	1	0	×
P6. 06	比例增益 P	0.01~10.00	0.01	1.00	0
P6. 07	积分时间 Ti	0.1∼200.0s	0.1s	1.0s	0
P6. 08	微分时间 Td	0.0: 无微分 (0.1~10.0s)	0.1s	0.0s	0
P6. 09	采样周期 T	0.00: 自动 (0.01~10.00s)	0.01s	0.00s	0
P6. 10	偏差极限	0.0~20.0%	0.1%	0.0%	0
P6. 11	闭环预置频率	0.0~上限频率	0.01Hz	0.00Hz	0
P6. 12	预置频率保持时间	0.0∼6000.0s	0.1s	0.0s	×
P6. 13	睡眠阀值	0. 0∼10. 00V	0. 01	10.00V	0
P6. 14	苏醒阀值	0. 0∼10. 00V	0. 01	0.00V	0
P6. 15	睡眠/苏醒检出时间	0. 1∼600. 0S	0.1	300.0S	0
		可编程运行参数			
P7. 00	可编程运行控制(含 简易 PLC 运行及摆 频运行)	LED 个位: 运行方式选择 0: 不动作 1: 单循环(简易 PLC) 2: 连续循环(简易 PLC) 3: 单循环后保持最终值(简易 PLC) 4: 摆频运行 LED 十位: 可编程多段速 (PLC)运行投入方式 0: 自动 1: 通过定义的多功能端子手动投入 LED 百位: 摆频运行投入方式 0: 自动 1: 通过定义的多功能端子手动投入 LED 百位: 摆频运行投入方式 0: 自动 1: 通过定义的多功能端子	1	000	×

参数 编号	名 称	设定范围	最小 单位	出厂值	更改
P7. 01	阶段1运行时间	0.0∼6000.0s	0.1s	10.0s	0
P7. 02	阶段2运行时间	0.0∼6000.0s	0.1s	10.0s	0
P7. 03	阶段3运行时间	0.0∼6000.0s	0.1s	10.0s	0
P7. 04	阶段 4 运行时间	0.0∼6000.0s	0.1s	10.0s	0
P7. 05	阶段 5 运行时间	0.0∼6000.0s	0.1s	10.0s	0
P7. 06	阶段 6 运行时间	0.0∼6000.0s	0.1s	10.0s	0
P7. 07	阶段7运行时间	0.0∼6000.0s	0.1s	10.0s	0
P7. 08	保留				
P7. 09	多段运行方向 1	LED 个位: 阶段 1 方向 0: 正转 1: 反转 LED 十位: 阶段 2 方向 0: 正转 1: 反转 LED 百位: 阶段 3 方向 0: 正转 1: 反转 LED 千位: 阶段 4 方向 0: 正转 1: 反转	1	0000	0
P7. 10	多段运行方向 2	LED 个位: 阶段 5 方向 0: 正转 1: 反转 LED 十位: 阶段 6 方向 0: 正转 1: 反转 LED 百位: 阶段 7 方向 0: 正转 1: 反转 LED 千位: 保留	1	000	0
P7. 11	摆频运行参数	LED 个位: 保留 LED 十位: 摆幅控制 0: 固定摆幅 1: 变摆幅 LED 百位: 摆频停机起动方式选择 0: 按停机前记忆的状态起动1: 重新开始起动 LED 千位: 摆频状态掉电存储 0: 掉电存储摆频状态 1: 掉电不存储摆频状态	1	000	×

参数 编号	名称	设定范围	最小 单位	出厂值	更改
P7. 12	摆频预置频率	0.00Hz~上限频率	0.01Hz	10.00Hz	0
P7. 13	摆频预置频率等待 时间	0.0∼3600.0s	0.1s	0.0s	×
P7. 14	摆频幅值	0.0~50.0%	0.1%	10.0%	0
P7. 15	突跳频率	0.0~50.0%(相对摆频幅值)	0.1%	10.0%	0
P7. 16	摆频周期	0.1∼3600.0s	0.1s	10.0s	0
P7. 17	三角波上升时间	0.0~100.0%(指摆频周期)	0.1%	50.0%	0
P7. 18	摆频中心频率基准	0.00Hz~上限频率	0.01Hz	10.00Hz	0
		通讯参数			
P8. 00	本机地址	0: 主站 1~31: 从站	1	1	×
P8. 01	通讯配置	LED 个位: 波特率选择 0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS LED 十位: 数据格式 0: 无校验 1: 偶校验 2: 奇校验 LED 百位: 保留 LED 千位: 0: 修改参数时返回信息 1: 修改参数时不返回信息	1	013	×
P8. 02	通讯超时检出时间	0. 0∼100. 0s	0.1s	10.0s	×
P8. 03	本机应答延时	0~1000ms	1ms	5ms	X
P8. 04	联动比例设置	0.01~10.00	0. 01	1.00	0
		 保护参数			
P9. 00	电机过载保护系数	30%~110%	1%	105%	0

参数编号	名 称	设定范围	最小 单位	出厂值	更改
P9. 01	欠压保护水平	360~480V (380V 机型)	1V	400V	0
P9. 02	过压限制水平	660~760V (380V 机型)	1V	700V	0
P9. 03	电流限幅水平	120%~220%	1%	180%	0
		高级功能参数			
PA. 00	零频运行阀值	0.00∼50.00Hz	0.01Hz	0.00Hz	0
PA. 01	零频回差	0.00∼50.00Hz	0.01Hz	0.00Hz	0
PA. 02	能耗制动起始电压	600~750V	1V	740V	0
PA. 03	能耗制动动作比例	10~100%	1%	50%	0
PA. 04	冷却风扇控制	0: 自动控制模式 1: 通电过程一直运转	1	0	0
PA. 05	UP/DOWN 端子修改 速率	0.01Hz~100.0Hz/S	0.01Hz/S	1.00Hz/S	0
PA. 06	过调制使能	0: 禁止 1: 允许	1	0	×
PA. 07	保留				
PA. 08	保留				
PA. 09	保留				
PA. 10	保留				
PA. 11	保留				
PA. 12	保留				

	监控参数				
监控码	名 称				
d-00	输出频率(Hz)				
d-01	设定频率(Hz)				
d-02	输出电流(A)				
d-03	输出电压(V)				
d-04	电机转速(RPM/min)				
d-05	运行线速度(m/s)				
d-06	设定线速度(m/s)				
d-07	母线电压(V)				
d-08	输入电压(V)				
d-09	PID 设定值				
d-10	PID 反馈值				
d-11	模拟输入 AI1 (V)				
d-12	模拟输入 AI2(A)				
d-13	脉冲输入频率(KHz)				
d-14	输入端子状态				
d-15	散热器温度(℃)				
d-16	模块温度(℃)				
d-17	当前计数值				
d-18	设定计数值				
d-19	第一次故障代码				
d-20	第二次故障代码				
d-21	第三次故障代码				
d-22	第一次故障时输出频率(Hz)				
d-23	第一次故障时设定频率(Hz)				
d-24	第一次故障时输出电流(A)				
d-25	第一次故障时输出电压(V)				
d-26	第一次故障时母线电压(V)				
d-27	第一次故障时模块温度(℃)				
d-28	软件版本				

第四章 参数使用详细说明

4.1 基本运行参数组

P0.00	控制方式			出厂设定	1
)	0	开环矢量控制(SVC)		
设定范围		1	V/F 控制		

0: 开环矢量控制

即无速度传感器矢量控制(SVC)。适用于不装编码器 PG 的高性能调速驱动场合,一台变频器只能驱动一台电机。如机床、离心机、拉丝机等。

1: V/F 控制

适用于对速度控制精度,低频力矩等性能要求不高的调速驱动场合。如风机、水 泵负载,可用于一台变频器驱动多台电机的场合。

₩₩ 提示:

- 1. 选择矢量控制方式时,在第一次运行前首先要进行电机参数自学习,以获取准确的电机参数。一旦自学习过程完成,得到的电机参数将储存在控制板内部,供以后的运行使用。尤其要注意的是,在自学习前一定要确保电机的铭牌数据与变频器的电机参数相一致,否则将会导致自学习过程无法完成或得到错误的结果。当不能获得电机的铭牌数据时,建议用户使用 V/F 控制方式。
- 2. 选择矢量控制方式时,要正确设置转速调节器的相关参数 (P1.14, P1.15), 以保证良好的稳态, 动态性能。
- 3. 选择矢量控制方式时, 一台变频器只能驱动一台电机,并且变频器与电机容量的等级不可相差过大,否则可导致控制性能下降或无法正常工作。

P0.01	频率给定通道选择			出厂设定	1		
	设定范围	0	键盘电位器				
			1	数字给定1(操作面板 ▲/\	7调节或数字编码	冯器调节)	
		2	数字给定 2(端子 UP/DOWN 调节)				
		3	数字给定 3(通讯给定)				
		4	AI1 模拟给定(0~10V)				
		5	AI2 模拟给定(0~20mA	.)			
		6	脉冲信号给定(0~20kH	\mathbf{z})			
		7	组合设定				
		8	外部端子选择				

MINI 系列高性能矢量变频器用户手册

0: 键盘电位器

通过操作键盘上的电位器来调节运行频率(LED键盘自带)。

1: 数字给定 1

由 P0.03 设定运行频率,运行过程中可以用操作键盘上的▲/▼按键或数字编码器来改变运行频率,修改后的频率值在掉电后会存储到 P0.03 中。但如果希望此频率不存储,则可以通过直接设置 P0.02 参数来实现。

建注意:

LCD 键盘不提供模拟电位器,但是提供了一个数字编码器,它可以完全代替 ▲/▼及 **SET** 按键的功能,来实现数字频率的调节以及功能参数的修改,并且实现数据的存储,从而方便了客户的使用。因此特别申明使用本编码器时,P0.01 应设定为1(数字给定1),而不是"0",否则该数字编码器作频率给定时将无效。如果客户需要使用模拟电位器来实现频率给定,请使用 LED 键盘或外接电位器。

2: 数字给定 2

由外部定义为 UP/DOWN 频率功能的控制端子的通断来改变运行频率。当 UP-COM 闭合时,频率上升;当 DOWN-COM 闭合时,频率下降;UP/DOWN 同时与 COM 闭合或断开时,频率维持不变。修改后的频率值在掉电后将存储到 P0.03 中。

UP/DOWN 端子修改运行频率的速率可通过参数 PA.05 来设定。

3: 数字给定 3

由 RS485 通讯接口接收上位机的频率指令,设定运行频率。

4: AII 模拟给定 (0~10V)

由外部电压输入端子 AI1(0~10V)设定运行频率。相关设定请见 P5.00-P5.01。

5: AI2 模拟给定 (0~20mA)

由外部电流输入口 AI2($0\sim20$ mA/ $0\sim10$ V)设定运行频率。相关设定请见 P5.02-P5.03。

6: 脉冲信号给定(0~20kHz)

通过 DI6 端子输入的外部脉冲信号($0\sim20kHz$)来设定运行频率。相关设定请见 P5.04-P5.05。

7: 组合设定

运行频率由各个设定通道的线性组合设定,组合方式由 P5.15-P5.16 确定。

MINI 系列高性能矢量变频器用户手册

8: 外部端子选择

MINI 系列高性能矢量变频器用户手册

4-2

销售热线:13916183699

通过外部多功能端子的 8 种开关组合来确定频率输入通道(0 表示与多功能端子 COM 断开,1 表示多功能端子与 COM 闭合),功能端子由 P4.00-P4.05 定义。其组合所对应的通道见如下表:

通道选择端子3	通道选择端子2	通道选择端子1	频率给定通道
0	0	0	键盘电位器
0	0	1	数字给定1
0	1	0	数字给定 2
0	1	1	数字给定3
1	0	0	AI1 模拟给定
1	0	1	AI2 模拟给定
1	1	0	端子脉冲给定
1	1	1	组合设定

表 6-1

提示:

此功能对某些要求频率通道实时切换的场合非常有用。如需要电压给定与电流给定动态切换,即有时候希望电压来给定频率,有时候又希望电流来给定频率,那么就可以通过多功能端子的"100"和"101"两种组合切换来实现。当然也可以直接通过定义为"频率切换至 AI2"的多功能端子来实现。

P0.02	数字频率控制	钊	出厂设定	00
	设定范围	00-11		

LED 个位

- 0:设定频率掉电后,设定频率存储在 P0.03 中,当再次上电后自动恢复该值。
- 1: 变频器掉电后,原来的设定频率自动丢失。重新上电后从 0.0Hz 开始运行。

LED 十位

- 0: 停机设定频率保持。
- 1: 停机时设定频率恢复到 P0.03。

MINI 系列高性能矢量变频器用户手册

₿注意:

LED 个位设定仅当 P0.01=1、2、3 时有效。

LED 十位设定仅当 P0.01=2、3 时有效。当 P0.01=1(数字给定 1)时,总是默认为 停机设定频率保持。另外,设 P0.02=10(停机不保持,掉电存储)时,掉电保存无效。

P0.03	运行频率数字设定		出厂设定	50.00Hz
	设定范围	0.00-上限频率		

当频率设定通道定义为数字给定(P0.01=1、2、3)时,变频器的初始运行频率由该参数决定。当操作面板处于监控模式下时,若 P0.01=1,则可以直接按 ▲/▼ 键修改本参数;若 P0.01=2,则频率先运行到初始运行频率处,然后再根据 UP/DOWN 的闭合情况决定频率上升或下降。

P0.04	运行命令通道选择			出厂设定	0
		0	操作键盘运行命令通	通道	
	设定范围	1	端子运行命令通道		
		2	通讯运行命令通道		

本参数设定变频器接受运行和停止等操作命令的物理通道。

0: 操作键盘运行命令通道

由操作键盘上的 **RUN**、**STOP/RESET**、**REV/JOG** 等按键进行运行命令控制在这种运行控制方式下,外部端子 FWD 的状态会影响到变频器的输出相序,当 FWD 与 COM 接通,变频器的输出相序就和设定相反;当 FWD 和 COM 断开,变频器的输出相序与设定相同。

1: 端子运行命令通道

变频器运行命令由外部端子 FWD, REV 和 COM 端子的通断状态控制,模式由 P4.06 设置,变频器的出厂设置如下表:

MINI 系列高性能矢量变频器用户手册

MINI 系列高性能矢量变频器用户手册

4.1 基本运行参数表

命令	端子状态
停机	FWD,REV 与 COM 同时断开或闭合
正转	FWD 与 COM 闭合,REV 与 COM 断开
反转	REV 与 COM 闭合, FWD 与 COM 断开

表 4-2

2: 通讯运行命令通道

运行命令由上位机通过通讯方式给出。

P0.05	运转方向设定			出厂设定	0
		0	正转		
	设定范围	1	反转		
		2	反转防止		

通过更改该功能码,可以在不改变其它任何参数的情况下改变电机的转向。其作 用相当于调整电机的任何两根输出线实现旋转方向的改变。

- 0: 正转
- 1: 反转
- 2: 反转防止

€注意:

如果设定此参数后,当系统参数初始化后,电机旋转方向会恢复原来的状态。对于系统调试好后严禁更改电机转向的场合谨慎使用!

P0.06	上限频率		出厂设定	50.00Hz
	设定范围	[P0.07]—400.0Hz		
P0.07	下限频率		出厂设定	0.00Hz
	设定范围	0.00Hz-[P0.06]		

上限频率是变频器允许工作的最高输出频率,用 fu 表示,设定范围是[P0.07]—

MINI 系列高性能矢量变频器用户手册

4-5

销售热线:13916183699

400.0Hz; 下限频率是变频器允许工作的最低输出频率,用 fi 表示,设定范围是0.00Hz—[P0.06]; 变频器开始运行时,从起动频率开始起动。运行过程中如果给定频率小于下限频率,则变频器一直运行于下限频率,直到变频器停机或给定频率大于下限频率。

P0.08	基本运行频率	<u> </u>	出厂设定	50.00Hz
	设定范围	1.00—上限频率		

基本运行频率 fb 是变频器输出最大电压时对应的最小频率,一般是电机的额定频率,它是频率设定的基础,也是加减速时间的基础,请务必注意不可随意调节。

P0.09	最大输出电压	E	出厂设定	380V/220V
	设定范围	200V—500V/100V—250V	7	

最大输出电压是变频器输出基本运行频率时候对应的最大输出电压,一般是电机的额定电压。在 V/F 控制方式下通过调整该参数可以改变变频器输出的电压值, 矢量控制方式下本参数无效。

_P0.10	机型选择			出厂设定	0
	设定范围	0	M型		

此参数用户不可更改,否则可能导致变频器电流显示不对而无法正常运行。

建注意:

此参数用户不可随意更改,否则可能导致变频器电流显示不对而无法正常运行。

P0.11	0.11 转矩提升选择			出厂设定	0
	设定范围	0	手动		
	以足祀団	1	自动		

转矩提升主要用于改善 V/F 控制模式下电机的低频转矩特性, 当变频器为矢量控制方式时,此功能无效。

0: 手动

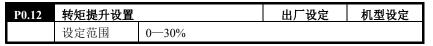
转矩提升电压由参数 P0.12 设定, 其特点是按 P0.12 所设定的参数来提升电压。

MINI 系列高性能矢量变频器用户手册

4-6

销售热线:13916183699

1: 自动


MINI 系列高性能矢量变频器用户手册

转矩提升电压随着定子电流的变化而变化,定子电流越大则提升电压也越大。 当设置为自动转矩提升的时候,可以有效的防止电机在轻载的时候,由于提升电 压过大而引起的磁路饱和,从而避免了电机在低频运行时的过热现象。

对于自动转矩提升电压的公式,如下作为参考:

提升电压= $(P0.12/200) \times P0.09 \times (变频器输出电流/变频器额定电流)$ 错误! 未指定书签。

手动转矩提升电压的计算和自动转矩提升电压相似,不过要去除输出电流与额定电流的比例项即可。应根据负载大小适当选择转矩量,负载大可以增加提升,但转矩提升不应过大。否则会导致电机过励磁运行,效率降低,容易过热甚至损坏。

在低频率段运行时,对变频器的输出电压作提升补偿,如图 4-1 所示:

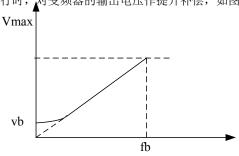


图 4-1 转矩提升设置

P0.13	转差频率补偿	式 不	出厂设定	0.0%
	设定范围	0.0—150.0%		

负载的变化有时会影响到电机的实际转差,通过此功能的设定,变频器将根据负载情况自动调节变频器的输出频率。比如在 50Hz 额定电流运行时,电机的转速必然是低于 50Hz 对应的同步转速的,这时如果需要电机转速提高一些就可以设置本参数。

MINI 系列高性能矢量变频器用户手册

4-7

建意:当 P0.00=1 时,本参数才有效。

MINI 系列高性能矢量变频器用户手册

销售热线:13916183699

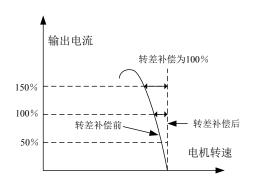


图 4-2 转差频率补偿说明

P0.14	加速时间1		出厂设定	机型设定
P0.15	减速时间 1		出厂设定	机型设定
	设定范围	0.1—3600s		

加速时间是指变频器输出频率从 0Hz 加速到基本频率所需的时间,如图 4-3 中 t1 所示,减速时间是指变频器输出频率从基本频率减速至 0Hz 所需的时间,如图 4-3 中 t2 所示。

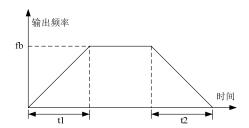


图 4-3 加速时间和减速时间设置说明

本系列变频器的加减速时间参数共有四组,其它的加减速时间(2、3、4)在参数 P2.22-P2.27 中定义,出厂默认的加减速时间为 P0.14、P0.15,如要选择其它加减速时间组,请通过控制端子进行选择。

MINI 系列高性能矢量变频器用户手册

P0.16	V/F 曲线设定		出厂设定	0
	设定范围	0-3		

0: 恒转矩

适用于普通恒转矩负载,输出电压与输出频率成线性关系。

- **1: 降转矩曲线 1** 输出是 1.7 次幂降转矩曲线。
- 2: 降转矩曲线 2 输出是 2.0 次幂降转矩曲线。

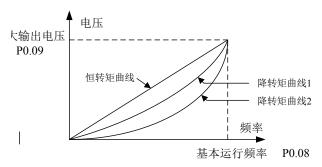


图 4-4 V/F 曲线

曲线 1 和 2 适用于风机、泵类等变转矩负载,曲线 2 相对曲线 1 有更好的节能效果。但运行于曲线 1 和 2 时,由于电机工作于欠励磁状态,有可能运行不稳定,所以因根据具体情况设置,当然也可以采用用户自定义 V/F 曲线。

3: 自定义 V/F 曲线

选择此方式时,可以通过功能码 P0.17—P0.22 设定所需要的 V/F 曲线。如图 4-5 所示。

建意:仅当 P0.00=1 时,本组参数才有效。

P0.17	V/F 频率值 F1		出厂设定	12.50Hz
	设定范围	0.00—频率值 F2		
P0.18	V/F 电压值 V1		出厂设定	25.0%
	设定范围	0.0—电压值 V2		

P0.19	V/F 频率值 F2		出厂设定	25.00Hz
	设定范围	频率值 F1 一频率值 F3		
P0.20	V/F 电压值 V2		出厂设定	50.0%
	设定范围	电压值 V1—电压值 V3		
P0.21	V/F 频率值 F3		出厂设定	37.50Hz
	设定范围	频率值 F2一基本运行频率		
P0.22	V/F 电压值 V2		出厂设定	75.0%
	设定范围	电压值 V2—100.0%		

此功能参数组用于灵活设定用户需要的 V/F 曲线,参见图 4-5。

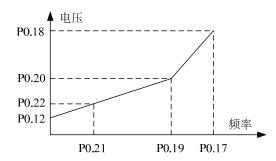


图 4-5 V/F 自定义曲线设定

_P0.23	REV/JOG 功能选择			出厂设定	1
	 	0	REV		
	设定范围	1	JOG		

操作面板上 REV/JOG 键的功能可以通过本参数的设定来选择,具体设定为:

- 0: 该按键设定为反转运行功能。
- 1: 该按键设定为点动运行功能。

4.2 电机与矢量控制参数组

P1.00	负载电机额定电	压	出厂设定	380V/220V
	设定范围	200V—500V/100V	7—250V	
P1.01	负载电机额定电	流	出厂设定	机型设定
	设定范围	0.1—600.0A		
_P1.02	负载电机额定转	速	出厂设定	机型设定
	设定范围	300—3000RPM		
_P1.03	负载电机额定频	率	出厂设定	50.00Hz
	设定范围	1.00—400.00Hz		
_P1.04	负载电机空载电流		出厂设定	0.1A
	设定范围	0.1—500.0A		

上述参数组为被控电机的电气参数。如果变频器与电机的功率不匹配(但不可相差两挡以上),那么也要保证将电机的实际额定电流输入到 P1.01,因为只有这样才能保证通过自学习功能后被控电机的参数检测的正确性,从而保证达到较好的控制效果。

P1.05	定子电阻		出厂设定	机型设定
	设定范围	$0.001 - 10.000\Omega$		
P1.06	转子电阻		出厂设定	机型设定
	设定范围	$0.001 - 10.000\Omega$		
P1.07	定,转子电感		出厂设定	机型设定
	设定范围	0.01—600.00mH		
P1.08	定,转子互感	_	出厂设定	机型设定
	设定范围	0.01-600.00mH		
P1.09	保留			

上述参数用于设定电机的基本电气参数,以上参数是矢量控制时所必需的参数。 本软体内部已包含标准四极电机参数一组,系统出厂将默认为此参数。但此参数 和实际被控电机的电气参数不一定完全一致。因此为了达到良好的控制效果,建

MINI 系列高性能矢量变频器用户手册

议采用电机参数自学习功能,以得到准确的电机参数。

当电机自学习结束后,P1.05-P1.08 的参数将被条件更新。

€注意:

如果您要进行参数自学习,请先确认已经正确输入电机的铭牌参数。如果电机容量与变频器容量不匹配,并且不经过电机参数自学习就直接运行于矢量控制模式下,可能导致变频器运行失控。

P1.10	转差补偿系数		出厂设定	1.00
	设定范围	0.50-2.00		

对无速度传感器矢量控制,该参数用来调整电机的稳速精度。当电机重载时速度 偏低则加大该参数,反之则减小该参数。

P1.11	电机预励磁选择		出厂设定	0	
	设定范围	0	条件有效		
		1	一直有效		

当电动机启动前处于停机状态的时候,为了获得足够的起动力矩,应该先建立气隙磁通。

0: 条件有效

选择该项,则电机起动时先预励磁,并持续参数 P1.12 所定义的时间后再运行加速。或通过定义为起动预励磁命令的多功能端子进行控制(暂保留)。

1: 一直有效

变频器起动时执行对电机的预励磁功能(在0.00Hz一直持续)。

P1.12	电机预励磁热	持续时间	出厂设定	0.2
	设置范围	0~10.0S		

本参数定义了矢量控制模式下电机预励磁动作所持续的时间。在预励磁状态下, 电机持续通过额定励磁电流,电机处于类似于直流制动状态,因此在矢量控制模 式下,直流制动功能参数无效。要想达到直流制动效果也可以通过调节预励磁功

MINI 系列高性能矢量变频器用户手册

能及持续时间来实现。

MINI 系列高性能矢量变频器用户手册

P1.13	P1.13 电机参数自学习			出厂设定	0
	设定范围	0	不动作		
		1	静态自学习		

0: 不动作

1: 静态自学习

当选择电机参数自学习后,按下 **RUN** 键就会启动一次参数的自学习过程,此过程由系统自动完成,不需要人工干预。在自学习过程中变频器不响应其他运行指令,参数自学习结束以后,本参数自动清零,通过自学习获取的电机参数将存储到变频器的控制板中,即参数 P1.05-P1.08 会条件更新。

注意: 本参数只有在矢量控制有效(P0.00=0)和操作面板控制运行方式(P0.04=0)下才能有效。

提示:

若参数自学习过程中出现过流故障,请查看电机电流和变频器的额定电流是否相匹配;参数自学习前必须确保电机处于停止状态,否则自学习不能正常进行;静态自学习的优点是可以在电机轴不脱离负载的情况下进行电机参数的测定。

P1.14	速度环 ASI	R 比例增益	出厂设定	1.00
	设置范围	0.01~5.00		
P1.15	速度环 ASI	R 积分时间常数	出厂设定	2.008
	设置范围	0.01~10.00S		

参数 P1.14, P1.15 仅对矢量控制方式有效,对 V/F 控制方式无效。

增大比例增益,可加快系统的动态响应,但过大容易产生振荡。减小积分时间常数,可加快系统的动态响应,但过小时,系统超调严重且容易产生振荡。通常保证在系统不振荡的前提下尽量增大比例增益,然后调节积分时间常数,使系统有较快的动态响应又超调不大。

MINI 系列高性能矢量变频器用户手册

4.3 辅助运行参数组

P2.00	起动方式			出厂设定	0
	设置范围	0	起动频率起动		
	以且把回	1	转速跟踪起动		
P2.01	起动频率			出厂设定	0.00Hz
	设置范围	0.00	-10.00Hz		
P2.02	起动频率保持时间		出厂设定	0.0s	
	设置范围	0.0~	~10.0s		

0: 起动频率起动

绝大多数的负载起动是通过常规方式起动的,其起动方式请见参数 P2.01 和 P2.02 的设置。对于有些对起动力矩要求比较高的系统,起动频率可以有效的克服起动困难问题。起动频率的保持时间(参数 P2.02)是指以起动频率运行的持续时间,可以根据实际情况设置,当设置为 0 时,起动频率无效,电机将从 0 Hz 起动。需要直流制动+起动功能请参见 P2.03, P2.04 的设置。

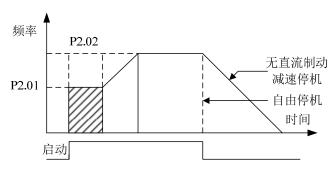


图 4-6 起动与停机频率输出曲线

1: 转速跟踪起动

变频器投入运行时,先检测电机的转速和运行方向。然后根据检测结果,直接跟 踪电机的当前转速和方向,对尚在旋转中的电机实施无冲击平滑起动。采用这种

MINI 系列高性能矢量变频器用户手册

起动方式时注意不要小马拉大车,否则容易过流保护。当系统惯性较大时,应考虑适当增大加减速时间值。

P2.03	起动直流制动		出厂设定	0.0%
	设定范围	0-100.0%		
P2.04	起动直流制动时间		出厂设定	0.0s
	设定范围	0.0—30.0s		

起动直流制动电流:变频器按直流制动方式起动的过程中,制动电流的百分数;起动直流制动时间:变频器在起动过程中,输出直流制动电流的持续时间。

当直流制动时间为 0 时,此功能无效;当设定好 P2.03、P2.04 以后,电机起动时将先执行直流制动功能,然后再从起动频率处起动,并持续 P2.02 所定义的时间后再加速至目标频率。

建注意:

仅当 P0.00=1 时,本组参数才有效。

P2.05	加减速方式			出厂设定	0
	北中英国	0	直线加速度		
	设定范围	1	S曲线加减速		

0: 直线加速度

变频器的输出频率按固定的速率增加或者减小,输出频率和加减速时间为线性关系。大多数负载采用这种方式。

1: 8 曲线加减速

变频器在加减速过程中,输出频率和加减速时间为S曲线关系,按照S曲线递增或者递减,如图4-7所示。本功能一般是为了减少在加减速过程中的噪音和振动,降低起动和停机时的负载冲击。S曲线的参数是由参数P2.06和P2.07设定的。

MINI 系列高性能矢量变频器用户手册

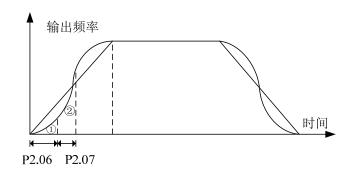


图 4-7 S 加减速曲线

P2.06	S曲线起始段	时间比例	出厂设定	20.0%
	设定范围	10.0—40.0%		
P2.07	S 曲线上升/7	下降段时间比例	出厂设定	60.0%
	设定范围	10.0—40.0%	·	

S 曲线起始阶段如图 4-7 中的①所示,是输出频率的斜率从零逐渐增大的过程; S 曲线上升阶段如图 4-7 中的②所示,是输出频率的斜率保持恒定的阶段;

以上参数组合使用,特别适用于传送,搬运等负载的起停过程。

P2.08	AVR 功能			出厂设定	1
	 	0	禁止		
	设定范围	1	允许		

0: 禁止

1: 允许

AVR 即自动电压调节。当变频器的输入电压和额定值有偏差时,通过该功能来保持变频器的输出电压的稳定,该功能仅在指令输出电压小于输入电源电压时有效。当减速时,如果 AVR 不动作,减速时间短,但运行电流较大; AVR 动作,电机减速平稳,运行电流较小,但减速时间较长。

MINI 系列高性能矢量变频器用户手册

P2.09	自动节能运行			出厂设定	0
	71 ch # EI		禁止		
	设定范围	1	允许		

0: 禁止

1: 允许

如果变频器处于自动节能运行时,变频器会自动检测电机的负载状况,并且调整 输出电压使电机始终工作于高效节能的状态。

自动节能功能在负载的变化频率低,变化范围大的情况下,节能效果很明显。其工作原理是通过在电机轻载下调节电机励磁状态,使电机工作在最优化的高效率状态,最大限度的降低电机本身的能量消耗而且获得附加节能效果。

注意:该功能主要适用于风机,泵类等负载。

P2.10	正反转死区田	寸间	出厂设定	0.0s
	设置范围	0.1—10.0s		

变频器运行过程中,接收到反转运行命令,由当前运行方向过渡到相反运行方向的过程中,在输出零频率处等待的过渡间隔。如图 4-8 所示 t1。

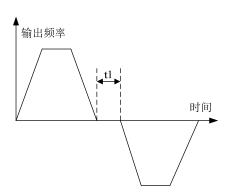


图 4-8 正反转死区时间

P2.11	停机方式			出厂设定	0
	n A # E		减速停机		
	设定范围	1	自由停机		

0: 减速停机

停机时变频器按设定的减速时间逐步减小,输出频率直到归零后停机。 如变频器选择有停机直流制动功能,则当频率到达制动起始频率开始制动,并执 行完毕后再停机。

1: 自由停机

变频器接收到停机命令后, 立即停止输出, 电机按惯性自由滑行停机。

选择这种方式的时候,一般配合外部机械抱闸实现快速停车。

某些泵类负载禁止采用此种停机方式,否则有可能导致水锤效应引起管道破裂。

需要减速停机+直流制动请参见 P2.12, P2.13, P2.14 的设置。

P2.12	停机直流制	动起始频率	出厂设定	机型设定
	设定范围 0.0—20.00Hz			
P2.13	停机直流制	引动电流	出厂设定	机型设定
	设定范围	0.0—100.0%		
P2.14	停机直流制		出厂设定	机型设定
	设定范围	0.0—30.0s		

- 以上参数用来设定停机时直流制动参数。
- P2.12 指变频器在减速停机过程中直流制动开始动作时的频率;
- P2.13 指停机直流制动时的输出电流对于变频器额定输出电流的百分比;
- P2.14 指停机直流制动的持续时间。停机制动时间为 0.0s 时,无直流制动过程。

P2.15	停电再起动设置			出厂设定	0
		0	禁止		
	设定范围	1	常规起动		
		2	转速跟踪起动		

P2.16	停电再起动	为等待时间	出厂设定	0.5s
	设定范围	0.0—20.0s		

P2.15 设为 0, 停电后再上电时, 变频器不会自动运行;

P2.15 设为 1, 停电后再上电时, 若满足起动条件则变频器等待 **P2.16** 定义的时间后, 变频器将自动从起动频率点开始起动;

P2.15 设为 2, 停电后再上电时, 若满足起动条件则变频器等待 **P2.16** 定义的时间后, 变频器将自动以转速跟踪方式起动。

在再起动的等待时间内,输入任何运行指令都无效。如输入停机指令,变频器则自动解除转速跟踪再起动状态,回到正常停机状态。

建注意:

设定本参数会导致非预期的电机起动,可能会对设备及人员带来潜在的伤害,请 务必谨慎使用。

P2.17	故障自动复	[位次数	出厂设定	0
	设定范围	0-10		
P2.18	故障自动复位间隔时间		出厂设定	3.0s
	设定范围	0.5-25.0s		

在运行过程中出现故障后,变频器停止输出,并显示故障代码。经过 P2.18 设定的复位间隔时间后,变频器自动复位故障并继续运行。

故障自动复位的次数由 P2.17 设定。故障复位次数设置为 0 时,无自动复位功能,只能手动复位(通过按键 $\overline{STOP/RESET}$)。

对于过热及过载保护等故障,变频器不允许进行自动复位操作。

P2.19	点动频率		出厂设定	10.00Hz
	设定范围	0.00—50.00Hz		
P2.20	点动加速时	才间设定	出厂设定	机型设定
P2.21	点动减速时	计间设定	出厂设定	机型设定
	设定范围	0.1—3600s		

以上参数定义点动运行时的相关参数,如下图所示:

MINI 系列高性能矢量变频器用户手册

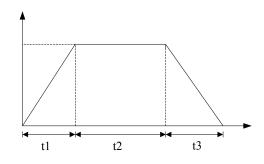


图 4-9 点动运行参数说明

 t_1 为实际的点动加速时间, t_3 为实际的点动减速时间, t_2 为点动运行时间, f_1 为点动运行频率。

值得注意的是, P2.20, P2.21 定义的是点动频率为基频 (50Hz) 时的加减速时间, 而点动频率出厂值为 10 Hz, 因此按比例进行换算, 其实际的加减速时间应为设定值的 20%。

另外可通过操作键盘,控制端子或上位机进行点动运行命令控制。

P2.22	加速时间 2	出厂设定	机型设定
P2.23	减速时间 2	出厂设定	机型设定
P2.24	加速时间 3	出厂设定	机型设定
P2.25	减速时间 3	出厂设定	机型设定
P2.26	加速时间 4	出厂设定	机型设定
P2.27	减速时间 4	出厂设定	机型设定
	设定范围 0.1-3600s		

以上参数的单位设置请参阅 P3.09。

以上参数分别对加减速时间2、3、4进行设定。

加减速时间 1.2.3.4(在 P0.14 和 P0.15 中定义加、减速时间 1)都可以由控制端子的组合进行选择,作为变频器运行过程中的加减速时间。通过功能参数组 P4.00-P4.05 选择相应的控制端子。

MINI 系列高性能矢量变频器用户手册

P2.28	多段速频率	₹ 1	出厂设定	5.00Hz		
P2.29	多段速频率	图 2	出厂设定	10.00Hz		
P2.30	多段速频率	₹ 3	出厂设定	15.00Hz		
P2.31	多段速频率	₹ 4	出厂设定	20.00Hz		
P2.32	多段速频率	₹ 5	出厂设定	25.00Hz		
P2.33	多段速频率	₹ 6	出厂设定	30.00Hz		
P2.34	多段速频率	医 7	出厂设定	40.00Hz		
P2.35	保留					
	设定范围	0.00-上限频率				

用于定义多段速运行 1~7 阶段的运行频率。详见参数 P7.00。

P2.36	跳跃频率 1		出厂设定	0.00Hz
P2.38	跳跃频率 2	}	出厂设定	0.00Hz
P2.40	跳跃频率 3		出厂设定	0.00Hz
	设定范围	0.0一上限频率		
P2.37	跳跃范围 1		出厂设定	0.00Hz
P2.39	跳跃范围 2		出厂设定	0.00Hz
P2.41	跳跃范围3		出厂设定	0.00Hz
	设定范围	0.0—10.0Hz		

以上参数的设置主要是为了使变频器避开机械负载的共振频率点。这些频率点一旦设定后,变频器在运行过程中将会自动的避免在这些频率点稳定运行,当然,无论加减速,变频器的频率都会经过这些点。本系统一共可以设定三个共振频率点。当跳跃频率范围设为0时,相应的共振频率点无跳跃功能。变频器的输出频率可以在某些频率点附近作跳跃运行,如图 4-10 所示:

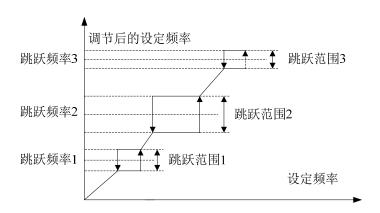


图 4-10 跳跃频率设定

P2.42	载波频率设	置	出厂设定	机型设定
	设定范围	1.0—12.0KHz		

本参数用于设置变频器输出 PWM 波的载波频率。

载波频率会影响电机运行的噪音,对需要静音运行的场合,可以适当提高载波频率达到要求。但提高载波频率会使变频器的发热量增加,同时对外界的干扰增大,所以应谨慎调节。

在出厂载波频率以上运行时,每增加1KHz,变频器需降额5%使用。

	P2.43	载波控制方式			出厂设定	1
	设定频率	0	固定载波			
		1	自动载波调整			

0: 固定载波

1: 自动载波调整

当设定为自动载波调整时,载波在频率变化的过程中会自动调整,以改善低频转 矩的脉动。

MINI 系列高性能矢量变频器用户手册

4.4 用户管理界面参数组

P3.00	保留					
P3.01	参数初始化	Ł	_	出厂设定	0	
		0	无操作			
	设定范围	1	恢复出厂设定			
		2	清除故障记录			

0: 无操作

此时变频器处于正常的参数读、写状态。

1: 恢复出厂设定

将参数组 P0-PA 中的所有参数恢复到出厂设置值。

注意:本功能对重要控制参数 P0.00, P0.01, P0.04, P0.10 无效, 以上重要控制参数只可手动更改;本功能将清除电机参数自学习后得到的结果,如果设定矢量控制方式,需重新自学习。

2: 清除故障设置

将清除变频器的历史故障记录。

P3.02	参数写入保护			出厂设定	0
		0	允许修改所有参数		
	设定范围	1	仅允许修改频率设定		
		2	所有参数禁止修改		

0: 允许修改所有参数

注意:运行中有些参数是不能被修改的。具体请见参数简表中的更改项。

- 1: 仅允许修改频率设定
- 2: 所有参数禁止修改

设定此项功能后可防止他人擅自改动变频器的参数设置。

MINI 系列高性能矢量变频器用户手册

_P3.03 _	厂家密码		出厂设定	0
	设定范围	0—9999		

MINI 系列高性能矢量变频器用户手册

P3.04	监控参数13	选择	出厂设定	0
	设定范围	0—18		
_P3.05	监控参数 2 战	监控参数 2 选择		1
	设定范围	0—18		

本参数用于确定控制面板在状态监控模式下的显示内容,也就是在 LED 及 LCD 上显示的内容。其中 LED 显示监控参数 1,LCD 画面的左下角区域显示监控参数 2。

P3.06	线速度系数		出厂设定	1.00
	设定范围	0.01-100.0		

当显示的速度为线速度时,线速度参数的折算公式为:

线速度=频率×线速度系数

P3.07	闭环显示系	数	出厂设定	1.00
	设定范围	0.01—100.0		

显示 PID 反馈/设定值=闭环显示系数×实际反馈/设定值

P3.08	程序版本		出厂设定	
	设定范围	0-99.99		

本参数显示程序的版本号。

P3.09	加减速度时间单位			出厂设定	0
	设定范围	0	秒		
		1	分		

0: 秒 1: 分

用于设定加减速时间设定中的单位,默认为秒。

MINI 系列高性能矢量变频器用户手册

4.5 开关量输入输出参数

P4.00	输入端子 DI	1 功能	出厂设定	0
P4.01	输入端子 DI	2 功能	出厂设定	0
P4.02	输入端子 DI	3 功能	出厂设定	0
P4.03	输入端子 DI	4 功能	出厂设定	0
P4.04	输入端子 DI5 功能		出厂设定	0
P4.05	输入端子 DI6 功能		出厂设定	0
	设定范围	0-30(具体见下方说明)		

- 0: 控制端闲置
- 1: 多段速选择1
- 2: 多段速选择 2
- 3: 多段速选择3

多段速控制端子的 ON/OFF 组合用以选择多段速的输出速率,见下表 6-3 所示:

多段速控制端子3	多段速控制端子 2	多段速控制端子1	段速
OFF	OFF	OFF	普通运行
OFF	OFF	ON	1
OFF	ON	OFF	2
OFF	ON	ON	3
ON	OFF	OFF	4
ON	OFF	ON	5
ON	ON	OFF	6
ON	ON	ON	7

表 4-3

- 4: 加减速时间1
- 5: 加减速时间 2

加减速时间选择的 ON/OFF 组合,可以实现 4 种加减速时间的选择。见下表 4-4 所示:

MINI 系列高性能矢量变频器用户手册

加减速时间 2	加减速时间 1	加减速时间
OFF	OFF	1
OFF	ON	2
ON	OFF	3
ON	ON	4

表 4-4

6: 频率通道选择 1

7: **频率通道**选择 2

8: 频率通道选择 3

当频率输入通道为外部端子选择时(P0.01=8),变频器的频率设定通道由这三个端子的状态确定,其对应关系请参考表 6-1。

9: 正转点动控制

用于外部端子控制方式下的正转点动运行控制。

10: 反转点动控制

用于外部端子控制方式下的反转点动运行控制。

正转点动要优先于反转点动,当两者同时闭合时,正转点动有效。

11: 自由停机控制

用于外部端子控制方式下的自由停车控制。闭合时变频器将自由停机,断开后变频器将以转速追踪方式起动运行。

12: 频率递增指令

用于实现频率的递增控制。

13: 频率递减指令

用于实现频率的递减控制。

14: 外部设备故障输入(常开式,闭合有效)

外部故障输入,通过该端子可以输入外部设备的故障信号,便于变频器对外部设备进行故障监视。

15: 三线式运转控制

当运行命令通道(P0.04=1)时,并且运行命令端子组合方式选择为三线模式时,本参数定义的外部端子为变频器停机触发开关,其原理请参考参数 P4.06 的详细功

MINI 系列高性能矢量变频器用户手册

能解释。

16: 直流制动指令

变频器在停机的时候,如果本参数定义的端子闭合,则当输出频率低于直流制动起始频率的时候,将启动直流制动功能,直到该端子断开。具体请参阅参数 P2.12-P2.14 的详细功能解释。

17: 计数器清零信号输入

对变频器内置的计数器进行清零操作,和18号功能配合使用。

18: 计数器触发信号输入

内置计数器的脉冲输入口,计数脉冲的频率范围为 0~500HZ。

19: 外部脉冲输入

该端子接收外部脉冲信号作为频率给定,具体请参考 P5.04, P5.05 的相关设置。 注意:

- 1. 18, 19 项只对 DI6 有效,即只有 DI6 端子可设为该功能。
- 2. 输入脉冲的最大频率为 20KHz, 幅值为低电平 0V, 高电平 18~26V。

20: 外部复位信号输入(RESET)

当变频器发生故障后,可以通过该端子对故障进行复位。其作用相当于操作键盘 STOP/RESET 键的功能。

21: UP/DOWN 端子频率清零

当频率给定通道设定为 UP/DOWN 端子有效时,通过该功能端子可以直接清除该运行频率。

22: PID 运行投入

当 PID 投入方式为端子有效时,该端子有效则 PID 运行有效。

23: 可编程多段速运行投入

当可编程多段速运行(PLC)投入方式为端子有效时,该端子有效则可编程多段速运行(PLC)有效。

24: 摆频运行投入

当摆频运行投入方式为端子有效时,该端子有效则摆频运行有效。

25: 摆频状态复位

选择摆频功能时,无论是自动还是端子手动投入,闭合该端子将清除变频器内部记忆的摆频状态信息,断开该端子,摆频重新开始。

MINI 系列高性能矢量变频器用户手册

26: 外部停机指令

该指令对所有运行命令通道有效。该端子有效时,变频器将按照 P2.11 所定义的方式停机。

27: 变频器运行禁止指令

该端子有效,则运行中的变频器将自由停机,待机状态则禁止起动。主要用于需 安全联动的场合。

28: 变频器加减速禁止指令

该端子有效,可保证变频器不受任何外来信号的影响(停机命令除外),维持当前转速运转。

29: 命令切换至端子

该端子有效,则运行命令通道强制切换为端子运行命令通道,断开后则恢复原来的运行命令通道。

30: 频率切换至 AI2

该端子有效,则频率给定通道强制切换为 AI2 给定,断开后则恢复原来的频率给定通道。

- 31: 定时开始 该端子有效,则定时器开始计时。
- 32: 定时清零 该端子有效,则定时器开始的计时被清零。

P4.06	FWD/REV 端子控制模式		出厂设定	0	
	北 台英田	0	二线式控制模式 1		
		1	二线式控制机	莫式 2	
设定范围	2	三线式控制模式1			
		3	三线式控制机	莫式 2(保留)	

0: 二线式控制模式1

请参见图 4-11 所示(默认模式):

K2	K1	运行指令
0	0	停止
1	0	反转
0	1	正转
1	1	停止

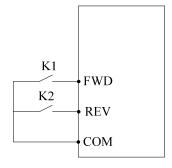


图 4-11 二线式控制模式 1

1: 二线式控制模式 2

请参见图 4-12 所示:

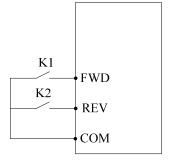


图 4-12 二线式控制模式 2

2: 三线式控制模式1

三线式控制如图 4-13 所示。其中 DIi 为三线式运转控制端子,由参数选择输入端子 DII \sim DI6 中的任意一个。其中:

SB2一正转开关(常开)

SB1一停机开关(常闭)

SB3一反转开关(常开)

MINI 系列高性能矢量变频器用户手册

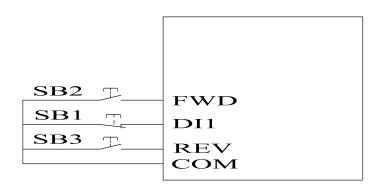


图 4-13 三线式控制模式1

3: 三线式控制模式 2

三线式控制 2 如图 4-14 所示。其中 Dli 为三线式运转控制端子,由参数选择输入端子 Dl1~Dl6 中的任意一个。其中:

SB2一运行开关(常开)

SB1一停止开关(常闭)

K一方向开关

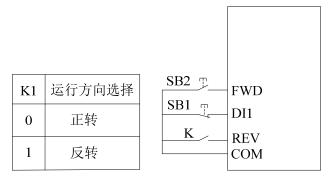


图 4-14 三线式控制模式 2

P4.07	开路集电极输出端子 DO1 设定	出厂设定	0
P4.08	开路集电极输出端子 DO2 设定	出厂设定	1

MINI 系列高性能矢量变频器用户手册

P4.09	可编程继电器输出		出厂设定	15
	设定范围	0-15(具体见下方说明)	

0: 变频器运行中指示

当变频器处于运行状态时,输出有效信号,否则输出无效信号。

1: 频率/速度到达信号(FAR)

请参照参数 P4.12 说明。

2: 频率/速度水平检测信号(FDT)

请参照参数 P4.10 说明。

3: 变频器零转速运行中指示

指变频器输出频率为 0.00Hz, 但此时仍处于运行状态时所输出的指示信号。

4: 外部设备故障停机

在变频器运行过程中,开关量输入端子接收到外部设备故障信号后,变频器出现故障停机时,输出指示信号。

5: 输出频率到达上限

指运行频率到达上限频率时, 变频器输出的指示信号。

6: 输出频率到达下限

指运行频率到达下限频率前, 变频器输出的指示信号。

7: 可编程多段速一个周期运行结束

指可编程多段速(PLC)运行一个周期结束时,该端口输出指示信号(单个脉冲信号,信号宽度 500mS)

8: 变频器过载报警信号

当变频器的输出电流超过过载报警水平时,经过设定的报警延时时间后输出指示信号。

9: 变频器上电准备就绪

当变频器上电准备就绪时,即变频器无故障,母线电压正常,变频器禁止运行端 子无效,可以接受运行指令起动,则该端口输出指示信号。

10: 计数器检测信号输出

详见参数 P4.16 说明。

11: 计数器复位信号输出

详见参数 P4.15 说明。

4 - 31

MINI 系列高性能矢量变频器用户手册

销售热线:13916183699

12: 变频器故障

MINI 系列高性能矢量变频器用户手册

当变频器因故障停止运行时,输出有效信号,即低电平。正常的时候是高阻状态。

13: 欠压封锁停机

当直流母线电压低于欠压限制水平时,输出指示信号,同时 LED 显示"POFF",停机欠压无效。

14: 摆频上下限限制

选择摆频功能后若以中心频率计算所得摆频的频率波动范围超过上限频率 P0.06 或低于下限频率 P0.07 时,输出指示信号。

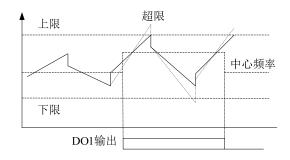


图 4-15 摆频运行上下限限制示意图

15: 可编程多段速阶段运行完成

可编程多段速(PLC)当前阶段运行完成后输出一个宽度 500mS 的脉冲信号。

16: 保留

17: 定时到达输出

当定时累计到达 PA. 07 的设定时输出一个宽度 500mS 的脉冲信号。

建注意:

DO1, DO2 输出有效信号为低电平(但要用电阻上拉到 24V 电源), 当无效时输出为高阻态,继电器输出则为开关信号

P4.10	FDT 水平设定		出厂设定	0.00Hz
	设定范围	0.00Hz-上限频率		
P4.11	FDT 滞后值		出厂设定	1.00Hz

MINI 系列高性能矢量变频器用户手册

\# \ II.	
设定范围	0.00Hz-30.00Hz

MINI 系列高性能矢量变频器用户手册

本组参数用于设定频率检测水平,当输出频率上升超过高于 FDT 设定值时,输出开路集电极信号,当输出频率下降值低于 FDT 滞后值时,输出高阻态。如图 4-16 所示:

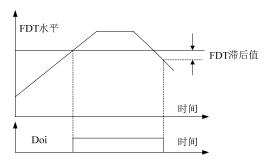


图 4-16 FDT 设定说明

P4.12	频率到达 FAR 检出幅度		出厂设定	0.00Hz
	设定范围	0.00—15.00Hz		

当变频器的输出频率在设定频率的正负检出幅度内, 选定的输出端子输出开路集电极信号, 如图 4-17 所示:

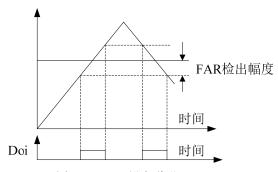


图 4-17 FAR 设定说明

P4.13	过载预报警水平		出厂设定	100%
	设定范围	20—120%		

MINI 系列高性能矢量变频器用户手册

P4.14	过载预报警码	些时	出厂设定	1.0S
	设定范围	0.0~15.0s		

过载预报警水平定义了过载预报警动作的电流阀值,其设定范围是相对于额定电流得出的百分比。一般过载预报警水平的设置应小于热继电保护水平。当输出电流达到过载预报警水平,且其持续水平超过设定的过载预报警延时时间时,过载预报警动作。

P4.15	计数器复位值设定		出厂设定	1
	设定范围	0—9999		
P4.16	计数器检测值设定		出厂设定	1
	设定范围	0—P4.15		

本参数组规定了计数器的计数工作,计数器的时钟端子是由外部端子 X6 输入。 当计数器对外部时钟的计数值到达参数 P4.15 所规定的数值时,在相应的多功能 输出端子(计数器复位信号输出)输出一个宽度等于外部有效信号周期的信号, 并且对计数器清零。

当计数器的计数值到达 P4.16 规定的数值时,在相应的多功能输出端子(计数器检测信号输出)输出有效信号。如果继续计数而且超过了参数 P4.15 设定的数值,在计数器清零的时候,该信号撤消。

如下图所示:将 DO1 设为复位信号输出,DO2 设为检测信号输出,P4.15 设为 8,P4.16 设为 5。

当到达检测值 "5"时,DO2 输出集电极开路信号并一直维持;当到达复位值 "8"时,DO1 输出一个脉冲周期的集电极开路信号并计数清零,同时 DO1,DO2 均撤消输出信号。

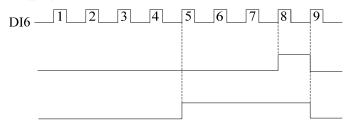


图 4-18 计数器复位值设定与计数器检测值设定示意图

MINI 系列高性能矢量变频器用户手册

4.6 模拟输入输出参数组

P5.00	AII 输入下限电压		出厂设定	0.0V
	设定范围	0.0—P5.01		
P5.01	AI1 输入上限电压		出厂设定	10.0V
	设定范围	P5.00—10.0V		

以上参数定义了模拟电压通道 AII 的范围,应该根据输入信号的实际情况设定。

P5.02	AI2 输入下限电流		出厂设定	0.0mA
	设定范围	0.0—P5.03		
P5.03	AI2 输入上限电流		出厂设定	20.0mA
	设定范围	P5.02—20.0mA		

以上参数定义了模拟电流通道 AI2 的范围,应该根据输入信号的实际情况设定。

₿注意:

一般情况下 AI2 口都是做电流输入口使用,但如果有必要,也可以做电压输入口使用。可通过控制板上的跳线 JP1 跳线选择,两者之间的数学对应关系可按照 20.0 mA 等效于 10.0V 来换算。

P5.04	外部脉冲输入	下限频率	出厂设定	0.0kHz
	设定范围	0.0—P5.05		
P5.05	外部脉冲输入上限频率		出厂设定	10.0kHz
	设定范围	P5.04—20.0KHz	•	

以上参数定义了外部脉冲信号的频率范围。

P5.06	最小输入对应	最小输入对应设定频率		0.00Hz
	设定范围	0.0Hz-上限频率		
P5.07	最大输入对应设定频率		出厂设定	50.00Hz

VI	I ## 4 <i>T</i> →
伐定泡围	0.0Hz—上限频率

MINI 系列高性能矢量变频器用户手册

本组参数用来设定外部输入量与设定频率的对应关系。频率设定信号经过滤波和增益处理后,与设定频率的关系用图表示,两种信号都可以独立实现正作用和反作用特性。fmax 和 fmin 分别是最大模拟输入对应频率和最小模拟输入对应频率。

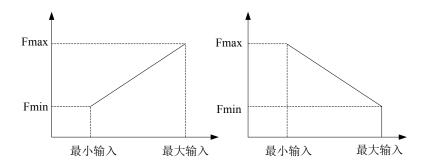


图 4-19 最大、最小模拟输入对应设定频率

P5.08	模拟输入信号延迟时间		出厂设定	0.5s
	设定范围	0.1—5.0s		

本参数对 AI1, AI2 及键盘电位器输入的模拟信号按设定的延迟时间进行滤波处理,以消除干扰信号的影响。但如果时间太长,会降低给定信号的响应速度。

P5.09 AO	1 多功能	莫拟量输出端子功能选择	出厂设定	0
P5.10 DO	3 多功能	脉冲输出端子功能选择	出厂设定	2
	0	输出频率		
	1	设定频率		
	2	输出电流		
设定范围	3	电机转速		
	4	输出电压		
	5	母线电压		
	6	PID 给定量		
	7	PID 反馈量		

MINI 系列高性能矢量变频器用户手册

AO1 为多功能模拟量输出端子, DO3 为多功能脉冲输出端子, 功能设置如下:

0: 输出频率

模拟输出幅值或脉冲输出频率与变频器的输出频率成正比。

AO1: (0-AO1 上限值)~(0.00-上限频率) DO3: (0-DO3 上限值)~(0.00-上限频率)

1: 设定频率

模拟输出幅值或脉冲输出频率与变频器的设定频率成正比。

AO1: (0-AO1 上限值)~(0.00-设定频率) DO3: (0-DO3 上限值)~(0.00-设定频率)

2: 输出电流

模拟输出幅值或脉冲输出频率与变频器的输出电流成正比。

AO1: (0- AO1 上限值)~(0.0-2 倍额定电流) DO3: (0- DO3 上限值)~(0.0-2 倍额定电流)

3: 电机转速

模拟输出幅值或脉冲输出频率与变频器的电机转速成正比。

AO1: (0- AO1 上限值)~(0-电机同步转速) DO3: (0- DO3 上限值)~(0-电机同步转速)

4: 输出电压

模拟输出幅值或脉冲输出频率与变频器的输出电压成正比。

AO1: (0-AO1 上限值)~(0-最大/额定输出电压) DO3: (0-DO3 上限值)~(0-最大/额定输出电压)

5: 母线电压

模拟输出幅值或脉冲输出频率与变频器的母线电压成正比。

AO1: (0-AO1 上限值) ~ (0-800V) DO3: (0-DO3 上限值) ~ (0-800V)

6: PID 给定量

模拟输出幅值或脉冲输出频率与PID的给定量成正比。

AO1: (0-AO1 上限值) ~ (0.00-10.00V) DO3: (0-DO3 上限值) ~ (0.00-10.00V)

7: PID 反馈量

模拟输出幅值或脉冲输出频率与PID的反馈量成正比。

AO1: (0-AO1 上限值)~(0.00-10.00V)

MINI 系列高性能矢量变频器用户手册

DO3: (0-DO3 上限值)~(0.00-10.00V)

P5.11	AO1 增益设	 安定	出厂设定	100%
	设定范围 20—200%			
P5.13	DO3 增益设定		出厂设定	100%
	设定范围	20-200%		
P5.12	保留			
P5.14	保留			

参数 P5.11 定义了模拟输出 AO1 的上限数值,当出厂值为 100%时,输出电压/电流的范围为 0-10V/0-20mA,电压和电流输出通过 JP2 跳线选择;

AO1 输出=(0-10V/0-20mA)×AO1 增益设定(最大不超过 10V/20 mA)

参数 P5.13 定义了脉冲输出 DO3 的上限数值,当出厂值为 100%时,输出频率的范围为 0-10KHz。

DO3 输出=(0-10 KHz)×DO3 增益设定(最大为 20 KHz)

P5.15	组合给定通	道设置	出厂设定	000
	设定范围	000—666		

LED 个位:操作数1

- 0: 键盘电位器
- 1: 数字给定 1
- 2: 保留
- 3: 通讯给定
- 4: AI1
- 5: AI2
- 6: 端子脉冲

LED 十位:操作数 2

- 0: 键盘电位器
- 1: 数字给定 1
- 2: 保留
- 3: 通讯给定
- 4: AI1
- 5: AI2

MINI 系列高性能矢量变频器用户手册

6: 端子脉冲

LED 百位:操作数3

- 0: 键盘电位器
- 1: 数字给定 1
- 2: 保留
- 3: 通讯给定
- 4: AI1
- 5: AI2
- 6: 端子脉冲

LED 千位: 保留

P5.16	组合给定算	法设置	出厂设定	00
	设定范围	00-54		

LED 个位:算法1

- 0: 加
- 1: 减
- 2: 绝对值(减法)
- 3: 取最大值
- 4: 取最小值

LED 十位: 算法 2

- 0: 加 1: 减
- 2: 绝对值(减法)
- 3: 取最大值
- 4: 取最小值
- 5: 操作数 3 不参与运算
- LED 百位: 保留
- LED 千位:保留

建注意:

仅当 P0.01=7 时, P5.15、P5.16 参数有效。

P5.15, P5.16参数定义当 P0.01=7 时,各模拟及数字输入量之间的组合算法,其

4-39 MINI 系列高性能矢量变频器用户手册

销售热线:13916183699

	4.5	模拟输	入输	H	参数组	Ħ
--	-----	-----	----	---	-----	---

具体的运算公式为:

MINI 系列高性能矢量变频器用户手册

(操作数 1)算法 1(操作数 2) 算法 2(操作数 3)

如果将 P5.16 的 LED 十位设为 5,则操作数 3 将不参与运算,只有两个操作数 (操作数 (和操作数 (和操作数 (的运算组合。

例程1

P5.15 设为 531, P5.16 设为 10, 则运算组合为:

{(数字给定 1+通讯给定) -AI2}

例程 2

P5.15 设为 410, P5.16 设为 21, 则运算组合为:

| (键盘电位器-数字给定) -AI1 |

提示:

算法约束规则一:任何情况下,运算的流程总是操作数 1 与操作数 2 按算法 1 运算得到结果 1,再将结果 1 与操作数 3 按算法 2 运算,得到最终结果。如果前两个数的运算结果 1 为负数,则此负数默认为 0。

算法约束规则二:如果总运算结果为负数,并且算法 2 又不是绝对值运算,则系统默认结果为 0

MINI 系列高性能矢量变频器用户手册

4.7 过程 PID 控制参数

模拟反馈控制系统:

压力给定量用 AI1 口输入,将压力传感器的 4-20mA 反馈值输入变频器的 AI2 口,经过内置 PID 调节器组成模拟闭环控制系统,如图 4-20 所示:

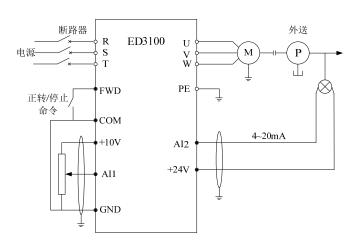


图 4-20 模拟反馈控制系统示意图

P6.00	PID 动作设置		出厂设定	00
	设定范围	00-11		

LED 个位:功能设置

0: 关闭

1: 打开

LED 十位: PID 投入选择

0: 自动投入

1: 通过定义的多功能端子手动投入

LED 百位: 保留

MINI 系列高性能矢量变频器用户手册

LED 千位: 保留

PID 调节作用如下:

PID 控制器通过控制对象的传感器等检测到的反馈量,将其与系统给定量进行比较,然后对其差值进行比例、积分、微分等运算,来调节变频器的输出频率,直到差值为零。适用于流量、压力及温度等物理量的过程控制。系统结构如图 4-21 所示:

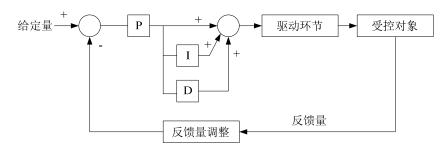


图 4-21 PID 系统结构图

P6.01	PID 给定通道选择			出厂设定	1
		0	键盘电位器给定		
		1	数字给定		
		2	保留		
		3	保留		
	设定范围	4	AII 给定		
		5	AI2 给定		
		6	端子脉冲		
		7	AI1+AI2		
		8	AI1-AI2		
		9	MIN {AI1,AI2}		
		10	MAX {AI1,AI2}		

0: 键盘电位器给定

PID 给定量由操作面板上的电位器来决定。

1: 数字给定

PID 给定量由数字给定,并通过参数 P6.03 设定。

2: 保留

3: 保留

4: AII 给定

PID 给定量由外部电压信号 AI1 (0~10V) 给定。

5: AI2 给定

PID 给定量由外部电流信号 AI2 (0~20mA/0~10V) 给定。

6: 端子脉冲

PID 给定量由外部脉冲给定。

7: AI1+AI2

AI1 与 AI2 取代数和。

8: AI1-AI2

AI1 与 AI2 之差,如果 AI1 小于或等于 AI2,则结果一直为 0。

9: MIN {AI1,AI2}

AI1, AI2 两者取小。

10: MAX {AI1,AI2}

AI1, AI2 两者取大。

P6.02	反馈通道选择			出厂设定	4
		4	AI1		
		5	AI2		
		6	端子脉冲		
	设定范围	7	AI1+AI2		
		8	AI1-AI2		
		9	MIN {AI1,AI2}		
		10	MAX {AI1,AI2}		

MINI 系列高性能矢量变频器用户手册

₿注意:

给定通道与反馈通道不能设为一样,否则给定量与反馈量完全一致,偏差值为0,PID将不能正常工作。另外反馈通道选择不要设定在0-3,否则没有意义。

P6.03	给定数字量证	设定	出厂设定	0.00V
	设定范围	0.00—10.00V		

当 PID 给定通道选择数字给定(P6.01=1)时,本参数用于设定 PID 控制的给定数字量值。

在恒压供水闭环控制系统中,此参数的设置应充分考虑远传压力表的量程和其输出反馈信号的关系,例如压力表量程为 0-10Mpa,对于 0-10V(0-20mA)电压输出,我们需要 6Mpa 的压力,那么就可以将给定的数字量设定为 6.00V,这样当 PID 调节稳定时,需要的压力就是 6Mpa 了。

P6.04	反馈通道增益	益	出厂设定	1.00V
	设定范围	0.01-10.00		

当反馈通道与设定通道水平不一致时,可用本功能参数对反馈通道信号进行增益 调整。

P6.05	反馈通道极性	生		出厂设定	0
	设定范围	0	正特性		
		1	负特性		

0: 正特性

当反馈信号大于 PID 的给定量,要求变频器输出频率下降(即减小反馈信号),才能使 PID 达到平衡。如收卷的张力控制,恒压供水控制。

1: 负特性

当反馈信号大于 PID 的给定量,要求变频器输出频率上升(即减小反馈信号),才能使 PID 达到平衡。如放卷的张力控制,中央空调控制。如图 4-22 所示:

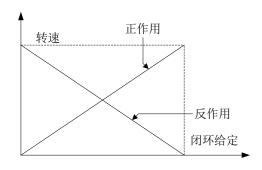


图 4-22 正反特性示意图

P6.06	比例增益 I	9	出厂设定	1.00
	设定范围	0.01—10.00		
P6.07	积分时间	Γi	出厂设定	1.00s
	设定范围	0.1—200.0s		
P6.08	微分时间]	Γd	出厂设定	0.0s
	设定范围	0.0—10.0s		

内置 PID 控制器的参数,应根据系统特性和实际需求而设定。

比例增益 P: 决定整个 PID 调节器的调节强度, P 越大,调节强度越大;积分时间 Ti:决定 PID 调节器对 PID 反馈量和给定量的偏差进行积分调节的快慢;微分时间 Td:决定 PID 调节器对 PID 反馈量和给定量的偏差的变化率进行调节的强度。

注意:当 P6.08=0.0 时,微分作用无效。

_P6.09	采样周期 T		出厂设定	0.00s
	设定范围	0.00—10.00s		

系统对反馈量的采样周期,在每个采样周期内调节器运算一次,采样周期越长则 响应越慢,但对干扰信号的抑制效果更好,所以需根据现场具体情况设置。

MINI 系列高性能矢量变频器用户手册

注意:当 P6.09=0.00 时,采样自动完成。

MINI 系列高性能矢量变频器用户手册

_P6.10	偏差极限		出厂设定	0.0%
	设定范围	0.0-20.0%		

偏差极限为系统允许的反馈量与给定量的偏差的绝对值与基准值 10V 的比值,当比值低于本设定参数值时,PID 不动作。

本功能主要用于对控制精度要求不高而又要避免频繁调节的系统,本参数的合理 设置有利于提高系统输出的稳定性。

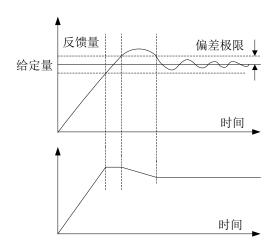


图 4-23 偏差极限示意图

P6.11	闭环预置频率		出厂设定	0.00Hz
	设定范围	0.0-上限频率		
P6.12	预置频率保持	预置频率保持时间		0.0s
	设定范围	0.0—6000.0s		

本参数定义了在 PID 控制有效时,在实际 PID 投入运行前变频器预运行的频率和运行时间。在某些控制系统中,为了使被控制对象快速到达预定数值,变频器根据本参数设定强制输出某一频率值 P6.11 至预定时间 P6.12。当控制对象接近于控制目标时,才投入 PID 控制器,以提高响应速度。

MINI 系列高性能矢量变频器用户手册

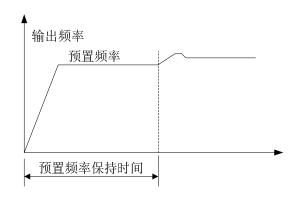


图 4-24 闭环预置频率运行示意图

P6.13	睡眠阀值		出厂设定	10.00V
	设定范围	0.0—10.00V		

本参数定义变频器从工作状态进入睡眠状态时的反馈限值。

如果实际的反馈值大于该设定值,并且变频器输出的频率到达下限频率的时候,变频器经过 P6.15 定义的等待时间后进入睡眠状态(即零转速运行中)。

_P6.14	苏醒阀值		出厂设定	0.00V
	设定范围	0.0—10.00V		
P6.15	睡眠/苏醒检出时间		出厂设定	300.08
	设定范围	0.1—600.0S		

P6.14 定义了变频器从睡眠状态进入工作状态的反馈限值,P6.15 定义了等待时间睡眠和苏醒状态的转换时间。如果实际的反馈值小于该设定值时,变频器经过约P6.15 的延迟等待时间后脱离睡眠状态开始工作。

MINI 系列高性能矢量变频器用户手册

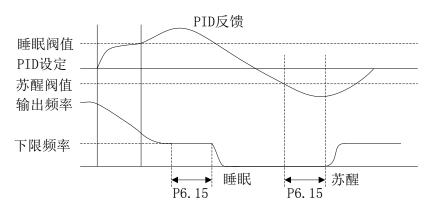


图 4-25 睡眠与苏醒功能示意图

MINI 系列高性能矢量变频器用户手册

4.8 可编程运行参数组

P7.00	可编程运行方式选择		出厂设定	000
	设定范围	000-114		

LED 个位: 运行方式选择

- 0: 不动作
- 1: 单循环(简易 PLC)
- 2: 连续循环(简易 PLC)
- 3: 单循环后保持最终值(简易 PLC)
- 4: 摆频运行

LED 十位: 可编程多段速(简易 PLC)运行投入方式

- 0: 自动
- 1: 通过定义的多功能端子手动投入

LED 百位: 摆频运行投入方式

- 0: 自动
- 1: 通过定义的多功能端子手动投入
- LED 千位: 保留

以下为各运行方式的功能详细解释

0: 不动作

可编程多段速运行无效。

1: 单循环

变频器多段速运行完成一个循环后自动停止,此时需要再次给出运行命令才能起动。若某一阶段的运行时间为 0,则运行时跳过该阶段直接进入下一阶段。如图 4-26 所示:

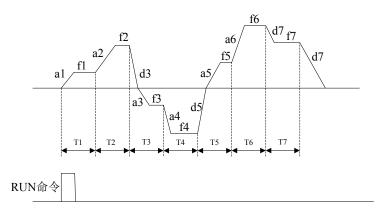


图 4-26 单循环示意图

 $f_1 \sim f_7$ 分别为阶段 1~阶段 7 的运行频率;

 $T_1 \sim T_7$ 分别为阶段 1~阶段 7 的运行时间;

 $a_1 \sim a_6$ 分别为阶段 $1 \sim$ 阶段 6 的加速时间;

 d_3 、 d_5 和 d_7 分别为阶段 3、阶段 5 和阶段 7 的减速时间。

₿注意:

多段速的运行时间一定要大于加速时间,而本组参数中仅定义了运行时间的大小,因此有必要知道多段速加减速时间的换算

多段加减速时间={(当前多段频率-起始多段频率)÷基本运行频率}×加减速时间(P0.14,P0.15)

例如基本运行频率为 50Hz,加速时间为 10S,减速时间为 20S,则当多段速运行时,系统从 20HZ 运行到 30HZ 时的加速时间为

T1= $\{(30HZ-20HZ) \div 50HZ\} \times P0.14=2S$

当系统从 30HZ 运行到 10HZ 时的减速时间为

 $T2= \{(30HZ-10HZ) \div 50HZ\} \times P0.15=8S$

2: 连续循环

变频器多段速运行反复循环,有停机命令输入时才停止,如下图 4-27 所示:

MINI 系列高性能矢量变频器用户手册

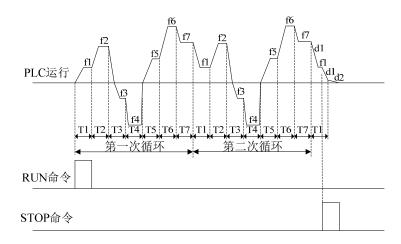


图 4-27 连续循环示意图

3: 单循环后保持最终值

6-51

变频器完成一个单循环后,按最后运行时间设置不为 0 的多段速阶段的设定频率和方向运行,如下图 4-28 所示:

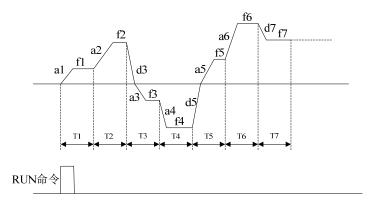


图 4-28 单循环后保持最终值示意图

4: 摆频控制

变频器的输出频率在预先设定的加减速时间内呈周期性地变化。此功能尤其适用于纺织、化纤等根据筒管的前后直径不同来让转速变化的系统,如图 4-29 所示。

P7.01	阶段1运行时间	出厂设定	10.0s
P7.02	阶段2运行时间	出厂设定	10.0s
P7.03	阶段3运行时间	出厂设定	10.0s
P7.04	阶段4运行时间	出厂设定	10.0s
P7.05	阶段5运行时间	出厂设定	10.0s
P7.06	阶段6运行时间	出厂设定	10.0s
P7.07	阶段7运行时间	出厂设定	10.0s
P7.08	保留		
	设定范围 0.0—6000.0s		
P7.09	多段运行方向 1	出厂设定	0000
P7.10	多段运行方向 2	出厂设定	-000
	设定范围 0000-1111(0:正转 1:反	转)	

以上功能参数用来设置可编程多段速的运行时间,运行方向及加减速时间。这些 参数只有在可编程多段速运行功能打开时才有效。

可编程多段速运行的优先级高于外部端子控制的多段速。

P7.11	摆频运行方式		出厂设定	000
	设定范围	0000—111		

LED 个位:保留

LED 十位: 摆幅控制

0: 固定摆幅

1: 变摆幅

LED 百位: 摆频停机起动方式选择

0: 按停机前记忆的状态起动

1: 重新开始起动

MINI 系列高性能矢量变频器用户手册

LED 千位: 摆频状态掉电存储

0: 掉电存储摆频状态

掉电后自动恢复状态并且从断点处恢复运行。

1: 掉电不存储摆频状态

变频器起动以后重新开始摆频运行。

P7.12	摆频预置频率		出厂设定	10.00Hz
	设定范围	0.00Hz上限频率		
_P7.13	摆频预置频率等待时间		出厂设定	0.0s
	设定范围	0.0—3600.0s		

预置频率是指在变频器投入摆频运行方式之前或者在脱离摆频运行方式时的运行频率。如果您选择参数 P7.00=4, 那么变频器在起动以后直接进入摆频预置频率运行,并且在经过了摆频预置频率等待时间后,进入摆频运行模式。选择端子手动投入时, P7.13 无效。

建注意:

如果 P7.11 参数的百位设置为 "0"的话,那么摆频运行停机以后再次运行时,摆频预置频率将无效,因为这时系统将按停机前记忆的状态运行。若设为 "1",则每次停机后起动摆频运行时,频率都将从摆频预置频率处起动。而 P7.11 的千位则决定每次掉电再上电后摆频起动时是否存储上一次运行信息,如果存储有效,则第一次起动时是否从摆频预置频率处起动将由 P7.11 参数的百位决定;如果不存储,那么每次上电运行时,第一次运行都将从摆频预置频率处起动。另外可以通过定义为摆频运行状态复位的多功能端子来对摆频状态复位。

P7.14	摆频幅值		出厂设定	10.0%
	设定范围	0.0-50.0%		

此参数是指摆频幅值的比率。

如果您选择固定摆幅的时候,实际摆幅的幅值计算公式是:

摆频幅值=P7.14×上限频率

如果您选择为变摆幅的时候,实际的摆幅值的计算公式是:

摆频幅值=P7.14×(摆频中心频率基准 P7.18+P0.01 所定义的频率设定)

6-53

_P7.15	突跳频率		出厂设定	0.0%
	设定范围	0.0-50.0%		

本参数是指在摆频过程中,当频率到达了摆频上限频率之后快速下降的幅度,当 然也是指频率达到摆频下限频率后,快速上升的幅度。

实际突跳频率=P7.15×摆频幅值

P7.16	摆频周期		出厂设定	10.0s
	设定范围	0.1—3600.0s		

本参数用于设定一个摆频的运行周期。

_P7.17	三角波上升时	·间	出厂设定	50.0%
	设定范围 0.0-100.0%			

本参数定义了摆频运行时从摆频下限频率到达摆频上限频率的运行时间,即摆频 运行周期中的加速时间。

实际三角波上升时间=摆频周期×P7.17

当然,摆频周期与三角波上升时间之差就是三角波下降时间。

P7.18	摆频中心频率基准		出厂设定	10.00Hz
	设定范围	0.00—上限频率		

本参数指摆频运行时, 变频器输出频率的中心值的基准值。

实际的摆频中心频率就是本参数值和外部频率设定通道 P0.01 所确定的设定频率的累加值。即:

摆频中心频率=【P7.18】+P0.01 指定通道所设定的频率

建注意:

摆频运行频率受上下限频率的约束,若设置不当则可能导致摆频运行不正常。

MINI 系列高性能矢量变频器用户手册

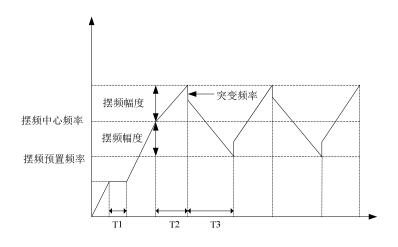


图 4-29 摆频设定说明

提示:

本系列变频器的频率设定优先级别如下:

点动运行频率 > 摆频运行频率 > PID 运行给定频率 > 可编程多段速运行频率 > 多功能端子选择多段频率 > 频率给定通道选择

MINI 系列高性能矢量变频器用户手册

4.9 通讯参数组

P8.00	本机地址		出厂设定	1
	设定范围	0-31		

本参数用于设置变频器在进行 RS485 通讯时的站址,该地址是唯一的。

0: 主站

表示本变频器在连动控制时为主站,控制其它相连接的变频器的运行。

1-31: 从站

表示本变频器作为从机接受上位机或作为主站的变频器的数据。变频器只接收与 标识地址相符的上位机或主站来的数据。

P8.01	通讯配置		出厂设定	013
	设定范围	0000-0125		

本参数规定 RS485 通讯时的波特率, 通讯各方必须设置相同的波特率, 并且规定 了通讯时的数据格式,通讯各方必须采用相同的数据格式,方可正常通讯。

LED 个位:

波特率设定

- 0: 1200BPS
- 1: 2400BPS
- 2: 9600BPS
- 3: 9600BPS
- 4: 19200BPS
- 5: 38400BPS
- LED 十位:

数据格式

- 0: 无校验
- 1: 偶校验
- 2: 奇校验

LED 百位:

保留

MINI 系列高性能矢量变频器用户手册

LED 千位:

- 0: 修改参数时返回信息
- 1: 修改参数时不返回信息

P8.02	通讯超时检验	出时间	出厂设定	10.0s
	设定范围	0.0-100.0s		

如果本机在超过本参数定义的时间间隔内,没有接到正确的数据信号,那么本机 认为通讯发生故障,变频器将按通讯失败动作方式的设置来决定停止运行或维持 现状。

_P8.03	本机应答延时		出厂设定	5ms
	设定范围	0-1000ms		

本参数规定了本机在正确接受上位机的信息码后,直到发送响应数据帧给上位机的延迟时间。

P8.04	联动比例设置		出厂设定	1.00
	设定范围	设 定范围 0.01-10.00		

本参数用来设定本变频器作为从机通过 RS485 接口接收到的频率指令的权系数, 本机的实际运行频率等于本参数值乘以通过 RS485 接口接收到的频率设定指令 值。在联动控制中,本参数可以设定多台变频器运行频率的比例。

4.10 保护参数

P9.00	电机过载保护	户系数	出厂设定	105%
	设定范围	30%—110%		

如果变频器驱动功率等级匹配的电机时,电机过载保护系数可以设定为 100%。这个时候如果输出电流小于 150%变频器额定电流,电机过载保护不会动作; 当输出电流等于 150%变频器额定电流时,电机过载保护也不会动作。因为变频器过载保护会优先动作。见下图 4-30 所示:

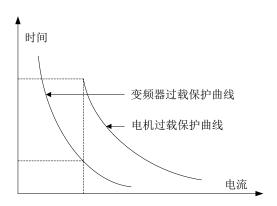


图 4-30 变频器过载保护与电机过载保护曲线

当变频器容量大于电机容量时,为了对不同规格的负载电机实施有效的过载保护,需合理设置电机的过载保护系数见下图 4-31 所示:

MINI 系列高性能矢量变频器用户手册

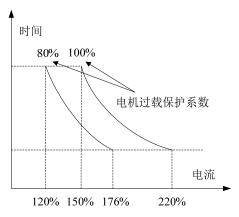


图 4-31 电机过载保护系数设定

保护系数由下面的公式确定:

电机过载保护系数=电机额定电流/变频器额定输出电流×100%

P9.01	欠压保护水3	F	出厂设定	400V	(380V 机型)
	设定范围	360V—480V(380V 机		L型)	220V-240V(220V 机型)

本参数规定了当变频器正常工作的时候,直流母线允许的下限电压。

建注意:

电网电压过低的时候,电机的输出力矩会下降。对于恒功率负载和恒转矩负载的 场合,过低的电网电压将增加变频器输入输出电流,从而降低变频器运行的可靠 性。因此当长期低电网电压运行的时候变频器需降额使用。

P9.02	过压限制水	P.	出厂设定		700V(380V 机型)
	设定范围	660	-760V (380V	机型)	330-380V (220V 机型)

本参数规定了在电机减速的过程中,进行电压失速保护的阀值。如果变频器内部 直流侧的泵升电压超过了本参数规定的数值时,变频器将会调整减速时间,使输 出频率延缓下降或停止下降,直到母线电压低于过压限制水平后,才会重新执行

MINI 系列高性能矢量变频器用户手册

减速动作。如下图 4-32 所示:

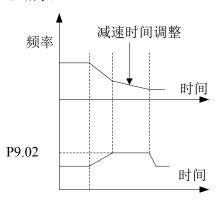


图 4-32 过压限制水平说明

P9.03	电流限幅水 ^x	Z.	出厂设定	180%
	设定范围	120%—220%		

在加速过程中,当变频器的输出电流超过本参数规定的数值的时候,变频器将自动调整加速时间,直到电流回落到低于该水平,然后再继续加速到目标频率值;在恒速运行中,当变频器的输出电流超过本参数规定的数值的时候,变频器将会调整输出频率(降频卸载),使电流限制在规定范围内,以避免过流跳闸。本参数默认自动限流功能全程有效。

MINI 系列高性能矢量变频器用户手册

4.11 高级功能参数

PA.00	零频运行阀	直	出厂设定	0.00Hz
	设定范围	0.00—50.00Hz		
PA.01	零频回差		出厂设定	0.00Hz
	设定范围	0.00—50.00Hz		

本参数定义了频率过零点的特性。

如果用模拟信号设定频率的时候,通常会由于模拟信号的不稳定性对变频器的输出造成一定的干扰。本参数的迟滞功能用来避免零点附近的波动。 以下以模拟电压输入通道 AI1 为例:



图 4-33 零频回差运行

运行命令发出以后,如果不设置以上参数(PA.00、PA.01),则输出频率将严格按照模拟电压与频率对应的关系输出。当设定好 PA.00、PA.01 以后,起动运行时,如果输入 AI1 对应的频率小于 PA.00+ PA.01,则变频器不会运行,直到输入 AI1 对应的频率到达或超过 PA.00+PA.01 时,电机才开始起动并按预定的加速时间加速到 AI1 对应的频率。

MINI 系列高性能矢量变频器用户手册

6.11 高级功能参数

MINI 系列高性能矢量变频器用户手册

减速时,当频率到达 PA.00+PA.01,这时变频器不会停机。只有当 AII 对应的设定频率达到或低于 PA.00 后,变频器才会停机。

利用此功能可完成变频器的休眠功能,从而实现节能运行。

PA.02	能耗制动起	始电压	出厂设定	740V
	设定范围	600—750V		
PA.03	能耗制动动	作比例	出厂设定	50%
	设定范围	10—100%		

本参数组用来定义变频器内置制动单元的动作参数。如果变频器内部直流侧电压 高于能耗制动起始电压时,内置制动单元动作。此时如果接有制动电阻,将通过 制动电阻释放变频器内部电流侧泵升电压能量,使直流电压回落。当直流侧电压 下降到某值时,变频器内置制动单元关闭。

能耗制动动作比率用来定义制动单元动作时施加在制动电阻上的平均电压值,制动电阻上的电压为电压脉宽调制波,占空比等于消耗制动动作比率,动作比率越大,能量释放越快,效果也就越明显,同时制动电阻上所消耗的功率也越大。使用者可根据制动电阻的阻值,功率以及需要的制动效果,综合考虑设置该参数。

PA.04	PA.04 冷却风扇控制			出厂设定	0
	设定范围	0	自动控制模式		
反 是犯围		1	通电过程一直运转		

0: 自动控制模式

运行过程中一直运转。

变频器停机且当检测到的散热器温度在40度以下时风扇自动停止。

1: 通电过程一直运转

本模式适用于某些风扇不能停转的场合。

PA.05	UP/DOWN	端子修改速率	出厂设定	1.00Hz/S
	设定范围	0.01Hz~100.0Hz/S		

通过修改本参数可以调整 UP/DOWN 端子控制频率时频率的上升和下降速度。

_PA.06	06 过调制使能			出厂设置	0
	设定范围	0	禁止		
	以足把固	1	允许		

本功能使 PWM 工作于调制比大于 1 的情况下,可使变频器的输出电压提高,从而增大力矩输出。但本功能会使输出电压的谐波分量增加,导致电流波形变差。 当长期电网电压比较低(额定电压-15%以下),或者发生电机在变频运行状态下输出力矩比工频运行输出力矩偏低的情况时(如长期重载工作),可以使用本功能。

PA.07	保留
PA.08	保留

MINI 系列高性能矢量变频器用户手册

第五章 故障诊断及处理

5.1 故障现象及对策

当变频器发生异常时,LED 数码管将显示对应故障代码及其内容,故障继电器动作,变频器停止输出,发生故障时,电机若在旋转,将会自由停车,直至停止旋转。MINI 可能出现的故障类型如表 5-1 所示,故障代码显示范围为 Er00-Er18。用户在变频器出现故障时,应首先按该表提示进行检查,并详细记录故障现象,需要技术服务时,请直接与本公司售后服务部或我公司各地代理经销商联系。

5.2 故障记录查询

本系列变频器记录了最近三次发生的故障代码以及最后一次故障时的变频器运行参数,查寻这些信息有助于查找故障原因。故障信息全部保存于 d19-d27 组参数中,请进入 d 组参数查寻相应的故障信息。

5.3 故障复位

变频器发生故障时,要恢复正常运行,可选择以下任意一种操作:

- (1) 当显示故障代码时,确认可以复位之后,按 STOP 健。
- (2) 将 DI1~DI6 中任一端子设置成外部 RESET 输入(P4.00~P4.05=20)后,与 COM 端闭合后即可故障复位。
- (3) 切断电源重新上电。

注意:

- (1) 复位前必须彻底查清故障原因并加以排除,否则可能导致变频器的永久性损坏。
- (2) 不能复位或复位后重新发生故障,应检查原因,连续复位会损坏变频器。
- (3) 过载、过热保护动作时应延时 5 分钟复位。

MINI 系列高性能矢量变频器用户手册

5-1

表 5-1 故障代码及对策表

故障 代码	故障名称	可能原因	对策
Er00	加速运行中过流	①加速时间太短; ②负载惯性过大; ③V/F 曲线不合适; ④电网电压过低; ⑤变频器功率太小; ⑥对旋转中的电机进行再起动。	①延长加速时间; ②减小负载惯性; ③调整转矩提升值或调整 V/F 曲线; ④检查输入电源; ⑤选用功率等级大的变频器; ⑥设置为直流制动起机;
Er01	减速运行 中过流	①减速时间过短; ②有大惯性负载; ③变频器功率偏小;	①延长减速时间; ②减小负载惯性; ③选用功率等级大的变频器;
Er02	匀速运行 中过流	①输入电压异常; ②负载发生突变或异常; ③变频器功率偏小	①检查输入电源; ②检查负载或减小负载突变; ③选用功率等级大的变频器;
Er03	加速运行中过压	①输入电压异常; ②对旋转中的电机实施再起动。	①检查输入电源; ②设置为直流制动起机;
Er04	减速运行 中过压	①减速时间太短; ②有能量回馈性负载; ③输入电源异常;	①延长减速时间; ②改用较大功率的外接能耗制动组件; ③检查输入电源;
Er05	匀速运行 中过压	①输入电压异常; ②负载惯性较大;	①检查输入电源; ②选用能耗制动组件;
Er06	停机时过 压	①输入电源电压异常;	①检查输入电源电压;
Er07	运行欠压	①输入电压异常;	①检查电源电压;
Er08	输入电源 缺相	①输入电源缺相或异常	①检查输入电源

故障 代码	故障名称	可能原因	对策
Er09	模块故障	①变频器输出短路或接地 ②变频器瞬间过流, ③环境温度过高; ④风道堵塞或风扇损坏; ⑤直流辅助电源故障; ⑥控制板异常;	①检查接线; ②参见过流对策; ③清理风道或更换风扇; ④寻求厂家或代理商服务;
Er10	散热器过 热	①环境温度过高; ②风扇损坏; ③风道堵塞;	①降低环境温度; ②更换风扇; ③清理风道并改善通风条件;
Er11	变频器 过载	①转矩提升过高或 V/F 曲线 不合适 ②加速时间过短; ③负载过大;	①降低转矩提升电压,调整 V/F 曲线; ②延长加速时间; ③减小负载或更换功率等级大的变 频器;
Er12	电机过载	①转矩提升过高或 V/F 曲线 不适合; ②电网电压过低; ③电机堵转或负载突变过大; ④电机过载保护系数设置不正确;	①降低转矩提升值或调整 V/F 曲线;②检查电网电压; ③检查负载; ④正确设置电机过载保护系数;
Er13	外部设备 故障	外部设备故障输入端子闭合;	断开外部设备故障输入端子并清 故障;
Er14	串行口通 讯故障	①波特率设置不当: ②串行口通讯错误; ③无上位机通讯信号;	①适当设置波特率; ②检查通讯电缆,寻求服务; ③检查上位机是否工作,接线是否正确;
Er15	保留		
Er16	电流检测 错误	①电流检测器件损坏或电路出现故障; ②直流辅助电源损坏;	①寻求厂家或代理商服务; ②寻求厂家或代理商服务;
Er17	键盘与控制板通信 故障	①连接键盘和控制板的电路出现故障; ②端子连接松动;	①寻求服务; ②检查并重新连接;
Er18	CPU 故障		

第六章 保养和维护

6.1 日常保养及维护

变频器使用环境的变化,如温度、湿度、 烟雾等的影响,以及变频器内部 元器件的老化等因素,可能会导致变频器发生各种故障。因此,在存贮、使用过程中必须对变频器进行日常检查,并进行定期保养维护。

6.1.1 日常维护

在变频器正常开启时,请确认如下事项:

- (1) 电机是否有异常声音及振动。
- (2) 变频器及电机是否发热异常。
- (3) 环境温度是否过高。
- (4) 负载电流值是否与往常值一样。
- (5) 变频器的冷却风扇是否正常运转。

6.2 定期保养及维护

6.2.1 定期维护

变频器定期保养检查时,一定要切断电源,待监视器无显示及主电路电源指示灯熄灭后,才能进行检查。检查内容如表 8-1 所示。

表 8-1 定期检查内容

检查项目	检查内容	异常对策
主回路端子、控制 回路端子螺丝	是否松动	用螺丝刀拧紧
散热片	是否有灰尘、异物堵塞风道	用 4~6kgcm²压力的干燥压缩空气吹掉
PCB 印刷电路板	表面是否有油污、导体屑附 着,铜箔是否有腐蚀现象	清洁 PCB 板件表面异物
冷却风扇	运转是否正常,是否有异常声音、振动异常,累计运行时间 达2万小时以上	更换冷却风扇
功率元件	是否有灰尘、油污等异物附着	清洁异物
电解电容	是否有漏液、鼓泡现象,防爆 阀有无突起	更换电解电容

MINI 系列高性能矢量变频器用户手册

6.2.2 定期保养

为了使变频器长期正常工作,必须针对变频器内部电子元器件的使用寿命,定期进行保养和维护。变频器电子元器件的使用寿命又因其使用环境和使用条件的不同而不同。如表 6-2 所示变频器的保养期限仅供用户使用时参考。

表 6-2 变频器部件更换时间

器件名称	标准更换年数
冷却风扇	2~3年
电解电容器	4~5年
印刷电路板	5~8年
熔断器	10年

以上变频器部件更换时间的使用条件为:

- (1) 环境温度: 年平均30℃。
- (2) 负载系数: 80%以下。
- (3) 运行时间:每天12小时以下。

6.3 变频器的保修

变频器发生以下情况,公司将提供保修服务:

- (1) 保修范围仅指变频器本体;
- (2) 正常使用时,变频器在 18 个月内发生故障或损坏,公司负责保修; 18 个月以上,将收取合理的维修费用;
- (3) 在18个月内,如发生以下情况,也应收取一定的维修费用:
 - 不按使用说明书的操作步骤操作,带来的变频器损坏;
 - 由于水灾、火灾、电压异常等造成的变频器损坏;
 - 接线错误等造成的变频器损坏;
 - 将变频器用于非正常功能时造成的损害;
- (4) 有关服务费用按照实际费用计算。如有合同,以合同优先的原则处理。

MINI 系列高性能矢量变频器用户手册

附录一 MINI 通讯协议

● 通讯协议

➤ 采用 MODBUS 协议,主机询问,处于主动状态;从机回答,处于被动状态。

(**注意**: 不是所有的主机询问帧,从机都会回答。比如主机广播,从 机就不会响应)

● 通讯地址

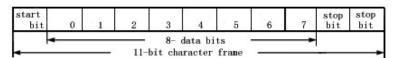
- ▶ 设定范围: 01~31
- ▶ 当系统使用 RS-485 串联通讯介面控制或监控时,每一台驱动器必须 设定其通讯地址且每一个连接网中每个地址均为"唯一"不可重复。
- ▶ 出厂设定值: 01

● 通讯传送速度 Baud Rate

▶ 波特率大小,详见参数表

● 通讯错误处理

▶ 具体错误码,详见参数表

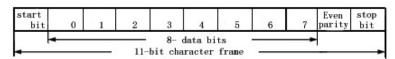

● 通讯超时(Over time) 检出

此参数设定串联通讯通讯超时的检出时间。当在此参数设定时间内, 无任何资料传输,即表是通讯超时,具体时间,详见参数表。

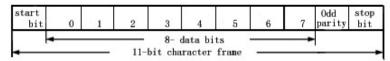
● BIT 流格式

MODBUS 通讯分为 RTU 和 ASCII 两种编码方式,此处编码按 RTU 方式直接传送,字符结构: 11 位,可以是下列 3 种格式任意之一。具体选择方式,请看参数表。

▶ (资料格式 8, N, 2)



MINI 系列高性能矢量变频器用户手册


7-1

____ 长度: 1字节

▶ (资料格式 8, E, 1)

▶ (资料格式 8, O, 1)

● 通信数据帧结构(RTU 模式)

MINI 通信数据帧格式采用的是 RTU 模式,数据格式如下:

下面列表也许更直观,但含义不变:

STX	保持无输入讯号大于等于 10ms	
Address	通信地址: 8-bit 二进制地址	
Function	功能码: 8-bit 二进制地址	
DATA(n-1)	汝也克	
	资料内容: n×8-bit 资料, n<=2(2 笔 16bit 资料)	
DATA 0		
CRC CHK Low	CRC 检查码:	
CRC CHK High	16-bit CRC 检查码由2 个8-bit 二進制組	
	合	
END	保持无输入讯号大于等于 10ms	

MINI 系列高性能矢量变频器用户手册

表格中各项具体含义如下:

- ▶ Address: 通讯的地址, 范围 0~31 (十进制)
 - ◆ 00H: 为广播(Broadcast)地址,以广播地址发送的信息帧从机不回应。

01H~1FH: 对具体某一地址驱动器。

- ➤ Function: 功能码,也叫命令字节, MODBUS 协议里面一共有 127 个功能码,现在我们只用其中 3 个,具体如下:
 - ◆ **03H**:读出寄存器内容。
 - ◆ 06H: 写入一笔资料到寄存器
 - ◆ 10H: 写入多笔资料到寄存器
- ▶ DATA(n-1): 具体数据,下面会有应用实例。
- ▶ RTU 模式的检查码 (CRC Check), 详细介绍在最后一页。
- 功能码详解及通讯帧举例:
 - ◆ 03H: 读出寄存器内容

读取从机保持寄存器的二进制数据,不支持广播,目前一帧信息最多 能读 5 个地址连续的数据。

询问讯息帧格式:

从机地址 + 03H + 寄存器地址 + 数据占寄存器个数(N) + CRC CHK

I		长度: 2字节
		长度: 2字节
		长度: 2字节
		长度: 1字节
		长度: 1字节

从机地址	1~31 (十进制)	1字节
功能码	03H	1字节
安方职业品	地址高8位	2 = #
寄存器地址	地址低 8 位	2 字节
安方职粉口(M)	高8位	2 → ++
寄存器数目(N)	低 8 位	2 字节
CDC +>i\ri\til	低 8 位	2 字节
CRC 校验码	高8位	注意:校验码的低8位在前

回应讯息帧格式:

从机地址 + 03H + 数据占的字节数(N*2) + 数据内容 + CRC CHK

	长度:2字节
	长度: 2 字节
	 长度:1字节

从机地址	1~31 (十进制)	1字节
功能码	03H	1字节
数据占的字节数(N*2)	寄存器数目*2	1字节
数据内容	高8位	2 学世
数据内 谷	低8位	2 字节
CRC 校验码	低 8 位	2 字节
して (文 3並1号	高8位	注意:校验码的低8位在前

例如: 从驱动器地址为01H的内部设定参数为0006H(P0.06)中读取参数值:

询问讯息帧格式:

Address	01H
Function	03H
Charting 1sts a 11mm	00Н
Starting data address	06H

MINI 系列高性能矢量变频器用户手册

Cina	00H
Sizes	01H
CRC CHK Low	64H
CRC CHK High	0BH

回应讯息帧格式:

Address	01H
Function	03H
data byte number	02H
Data content	10H
Data content	88H
CRC CHK Low	В5Н
CRC CHK High	E2H

询问帧: 01H+03H+00H+06H+00H+01H+64H+0BH

具体含义如下:

➤ Address : 01H ---- 该设备 ID 是 01H。

➤ Function : 03H ---- 读寄存器功能码。
➤ Starting data address: 0006H ---- 客存器地址为 0×000

➤ Starting data address: 0006H ----寄存器地址为 0x0006,表示从该寄存器读取参数。

➤ Sizes : 0001H ----读取1个寄存器的数据。

▶ CRC CHK: 参考最后一页的 RTU 模式的检查码 (CRC Check) 获取方法。

回应帧: 01H+03H+02H+10H+88H+B5H+E2H

具体含义如下:

▶ Address : 01H ---- 该设备 ID 是 01H。

▶ Function : 03H ---- 读出寄存器功能码。

▶ Data byte number : 02H ----表示读取内容长度占两个寄存器。

Data content : 1088H----表示读出的内容。

▶ CRC CHK:参考最后一页的 RTU 模式的检查码 (CRC Check) 获取方法。

◆ 06H: 写入一笔资料到寄存器

把一个值写到一个保持寄存器中,广播时,该功能把值写到所有从机的相同地址的寄存器中。

询问讯息帧格式:

从机地址	+	06H +	寄存器地址	+ 数据内容 -	CRC CHK	
						长度: 2字节
						长度: 2 字节
						长度: 2字节
						长度:1字节

从机地址	1~31 (十进制)	1字节
功能码	06H	1 字节
寄存器地址	地址高8位	2 字节
	地址低8位	
数据内容	高8位	2 字节
	低 8 位	
CRC 校验码	低 8 位	2 字节
	高8位	注意:校验码的低8位在前

回应讯息帧格式:

从机地址	+	06H +	寄存器地址	: + 数据内容	+ CRC CHK	
			1			_长度: 2字节
						_ 长度: 2字节
						长度: 2字节
1						_长度: 1字节
						_ 长度: 1字节

MINI 系列高性能矢量变频器用户手册

从机地址	1~31 (十进制)	1字节
功能码	06Н	1字节
寄存器地址	地址高8位	2 字节
	地址低8位	
数据内容	高8位	2 字节
	低 8 位	
CRC 校验码	低 8 位	2 字节
	高8位	注意:校验码的低8位在前

由上表可见,06H 功能码预置单寄存器请求的正常响应是在寄存器值改变以 后将接收到的数据传送回去,即发送数据与收到的数据是一样的。

例如: 对驱动器地址 01H, 写入 5000(1388H)到驱动器内部设定参数 0006H (即 P0.06) 中。

询问讯息帧格式:

Address	01H
Function	06H
Data address	00H
Data address	06H
Data content	13H
Data content	88H
CRC CHK Low	64H
CRC CHK High	9DH

回应讯息格式:

Address	01H
Function	06Н
Data address	00H
Data address	06Н
Data content	13H
Data content	88H

CRC CHK Low	64H
CRC CHK High	9DH

询问帧: 01H+06H+00H+06H+13H+88H+64H+9DH

具体含义如下:

▶ Address : 01H ---- 该设备 ID 是 01H。

➤ Function : 06H ---- 功能码。

- ▶ Data address: 0006H ----寄存器地址为 0x0006,表示写内容到地址为 0x0006 的寄存器中。
- Data content : 1388H ---- 写的内容, 在地址为 0x0006 的寄存器中写
 λ 1388H
- ▶ CRC CHK: 参考最后一页的 RTU 模式的检查码 (CRC Check) 获取方法。

回应帧: 01H+06H+00H+06H+13H+88H+64H+9DH

具体含义如下:

➤ Address : 01H ---- 该设备 ID 是 01H。

➤ Function : 06H ----功能码。

- ▶ data address : 0006H ----寄存器地址为 0x0006,表示在该寄存器写入 了数据。
- Data content : 1388H----表示写进寄存器的数据内容。
- ▶ CRC CHK: 参考最后一页的 RTU 模式的检查码 (CRC Check) 获取方法。

◆ 10H: 连续写入数笔资料(只能连续修改两个参数)

把数据按顺序预置到各寄存器中,广播时该功能代码可把数据预置到 全部从机中的相同地址的寄存器中。

询问讯息帧格式:

从机地址+10H+寄存器首地址+寄存器数目+数据字节数目+第1个数据内容+第2 个数据内容+ CRC CHK

从机地址	1~31 (十进制)	1字节
功能码	10H	1字节
寄存器首地址	地址高8位	2字节
	地址低 8 位	
寄存器数目(N)	高8位	2字节
	低8位	
数据字节数目(N*2)	寄存器数目*2	1字节
第1个数据内容	高 8 位	2 字节
	低8位	
第2个数据内容	高8位	2字节
	低8位	
CRC 校验码	低 8 位	2 字节
	高8位	注意:校验码的低8位在前

回应讯息帧格式:

从机地址 + 10H + 寄存器首地址 + 更改的寄存器数目 + CRC CHK

	I	长度: 2字节
	<u> </u>	
	 	长度: 2 字节
		长度: 1 字节

从机地址	1~31 (十进制)	1字节
功能码	06H	1字节
寄存器地址	地址高8位	2字节
	地址低8位	
数据内容	高8位	2字节
	低 8 位	
CRC 校验码	低8位	2字节
	高 8 位	注意:校验码的低8位在前

MINI 系列高性能矢量变频器用户手册

附录一 通讯协议

MINI 系列高性能矢量变频器用户手册

例如,变更驱动器(地址 01H)的加、减速时间的设定 P0.14=10.0(0064H),P0.15=8.0(0050H)

询问帧:

Address	01H
Function	10H
资料	00H
起始地址	0EH
资料量(word)	00H
页科里(WOIU)	02H
资料量(Byte)	04H
第一笔资料	H00
第 毛贝科	64H
第二笔资料	H00
第一毛贝科 	50H
CRC CHK Low	33H
CRC CHK High	С0Н

回应帧:

Address	01H
Function	10H
资料	00H
起始地址	0EH
资料量(word)	00H
页科里(WORD)	02H
CRC CHK Low	20H
CRC CHK High	0BH

询问帧: 01H+10H+00H+0EH+00H+02H+04H+00H+64H+00H+50H+33H+C0H

MINI 系列高性能矢量变频器用户手册

具体含义如下:

- ▶ Address : 01H ---- 该设备 ID 是 01H
- ▶ Function: 10H ---- 写多个寄存器功能码
- ➤ 起始地址: 000EH ----寄存器起始地址为 0x000E,表示写内容到 0x000E,0x000F。
- ▶ 资料量(word): 0002H ----写的内容的字量(即寄存器数目)。
- 》 资料量(Byte): 04-----写的内容的字节量。
- ▶ 第一笔资料: 0064H 写的第一笔内容。
- ▶ 第二笔资料: 0050H 写的第二笔内容。
- ➤ CRC CHK: 参考最后一页的 RTU 模式的检查码 (CRC Check) 获取方法。

回应帧: 01H+10H+00H+0EH+00H+02H+20H+0BH

具体含义如下:

- ▶ Address : 01H ---- 该设备 ID 是 01H
- ▶ Function : 10H ---- 写多个寄存器功能码
- ▶ 起始地址 : 000EH ----寄存器起始地址为 0x000E,表示从地址为 0x000E 的寄存器开始写数据。
- ▶ 资料量(word): 0002H ----写的内容的字量(即寄存器数目)。
- ▶ CRC CHK: 参考最后一页的 RTU 模式的检查码 (CRC Check) 获取方法。

请特别注意,回应帧只返回询问帧前面的六个字节,其 CRC CHK 是这六个字节的 CRC CHK。

通信应用举例:

7 - 11

● 通信协议的参数字址定义,如下表:

MINI 系列高性能矢量变频器用户手册

表 1 参数地址编号

定义	参数地址	功能说明	举例
设置参数寻址	GGnnH	GG 表示参数群, nn 表示 参数号码	P0.01 地址为 0001H P0.14 地址为 000EH P1.03 地址为 0103H P3.04 地址为 0304H
监控参数寻址	0D**	0D 表示监控参数群,** 表示参数号码	d-01 地址为 0D01H d-02 地址为 0D02H d-03 地址为 0D03H d-14 地址为 0D0EH
运行状态查询 地址	0E00	对该地址读变频器运行 状态信息,高8位为故障 信息,低8位为状态信息	具体数据位定义见 表2

● 通信协议运行状态存放地址和数据位定义,如下表

表 2 运行状态参数表

定义	参数地址 (十六进制)	数据组成		命令内容含义			
				Bit0	0-电压异常 1-电压正常		
			运	Bit1	保留		
		1 or	行状	Bit2	输出相序 0-正 1-反		
运行状态信息	0Е00Н	低 8		Bit3	指令方向 0-正 1-反		
		o 位	态	Bit4	0-停止 1-运行中		
		124	信息	Bit5	频率选择通道为1(数字 给定)标志		
				Bit6	加速标志		
				Bit7	减速标志		
		高	故	Bit8	故障号		
		8	障	\sim 14	HAPP J		
	位	信息	Bit15	有故障标志			

MINI 系列高性能矢量变频器用户手册

● 通信协议命令地址和命令定义,如下表

表 3、命令参数表

定义	参数地址 (十六进制)	命令	命令内容含义			
				00B:无功能		
			D: 40 1	01B:停止		
			Bit0∼1	10B:启动		
对 驱				11B: JOG 启动		
动			D: (0 0	00B:一次运行		
器	2000Н	****	Bit2∼3	11B:连续运行		
的				00B:无功能		
命令			Bit4∼5	01B:正方向指令		
~			D114~5	10B:反方向指令		
				11B: 故障复位		
					Bit6∼7	保留
			Bit8~11	保留		
通信给定频 率的地址	2001Н	可通过 06H 功能码修改该参数				

注: 使用 10H 功能码发送命令时,还可以同时修改频率参数

命令内容合成举例:

7-13

① 正方向连续运行启动命令:

0000000000	01	11	10>	001EH (十	六进	制)
				Bit0 \sim 1:	10	启动
		_		Bit2 \sim 3:	11	连续运行
	_			Bit4∼5:	01	正方向指令

② 停机命令:

●各功能码应用举例:

注意: 主机发送和从机回应的数据均为十六进制数

(1) 03H 功能码应用

① 读设定参数

参数的地址请参看表 1。

例如: 从地址为 01H 的从机读 P0.03 频率设置参数值 主机发送 (十六进制): 01 03 00 03 00 01 74 0A 从机回应 (十六进制): 01 03 02 13 88 B5 12

从回应信息可知,P0.03 的值为 1388H (十六进制),十进制为 5000,因 为有两位小数点,所以回应的频率为 50.00HZ

② 读监控参数

参数的地址请参看表 1。

例如: 从地址为 01H 的从机读 D-07 母线电压监控参数值

主机发送 (十六进制): 01 03 0D 07 00 01 37 67

从机回应 (十六进制): 01 03 02 01 DB F9 8F

从回应信息可知,D-07 的值为 1DBH(十六进制),十进制为 475,表示测得的母线电压为 475V,与键盘 D-07 显示的数值一致。

③ 读运行状态信息(地址为 0E00H)

例如: 从地址为 01H 的从机读运行状态信息 主机发送 (十六进制): 01 03 0E 00 00 01 86 E2 如果从机回应 (十六进制): 01 03 02 00 21 78 5C

MINI 系列高性能矢量变频器用户手册

7-14

Ŋ	人返回信息为	J 00)21F	[, _	二进	制之	为:					
0	0000000	0	0	1	0	0	0	0 1 -	> 0	001	H (十六进制)	
									BitO:	1	电压正常	
									Bit2:	0	输出相序为正	
									Bit3:	0	指令方向为正	
									Bit4:	0	停止状态	
				_					Bit5:	1	频率通道为1	
			_						Bit6:	0	非加速状态	
		_							Bit7:	0	非减速状态	
									Bit15:	0	没发生故障	
耳	[知从机电压]	ΞE	常,	相	序プ	方向	为ī	正,指令	令方向さ	ち 正	三, 停机状态, 频	率给
定方式为	対数字给定 1											
如	口果从机回应	į (十六	送	制)	: 0	1 0	3 02 9	3 21 1	4 A	ı.C	
Ŋ	人返回信息为	y 93	321F	[, _	二进	制	为:					
1	0010011	0	0	1	0	0	0	0 1 -	> 0	001	H (十六进制)	
									BitO:	1	电压正常	
							_		Bit2:	0	输出相序为正	
						_			Bit3:	0	指令方向为正	
					_				Bit4:	0	停止状态	
				_					Bit5:	1	频率通道为1	
			_						Bit6:	0	非加速状态	
									Bit7:	0	非减速状态	
								Bit8~	14: 00	100	11 故障号为 19	
									Bit15:	1	发生故障	
可	知从机发生	了 E	Er-1	9 世	友障	; 作	₹8	位 21H	为状态	信!	急,意义同上。	

(2) 06H 功能码应用

① 写设置参数

参数的地址请参看表 1。

例如: 把地址为 01H 的从机的参数 P0. 03 改为 1088H, 十进制为 4232, 即 42. 32HZ

主机发送 (十六进制): 01 06 00 03 10 88 74 6C

从机回应 (十六进制): 01 06 00 03 10 88 74 6C

回应信息一致说明修改成功, 其他参数修改也是如此。

② 写命令参数

例如:对地址为01H的从机写入正方向连续运行启动命令(001EH)

主机发送 (十六进制): 01 06 20 00 00 1E 02 02

从机回应 (十六进制): 01 06 20 00 00 1E 02 02

回应信息一致说明修改成功,命令数据的存放地址为 2000H,命令内容组合请参看表 3。

③通信给定频率

例如:对地址为01H的从机通信给定频率40.00HZ(0FA0H)

主机发送 (十六进制): 01 06 20 01 0F A0 D6 42

从机回应 (十六进制): 01 06 20 01 0F A0 D6 42

回应信息一致说明修改成功,通信给定频率的存放地址为2001H。

(3) 10H 功能码应用

①连续修改两个参数

参数首地址得来请参看表 1。

例如: 把地址为 01H 的从机的参数 P0. 03 改为 1088H, P0. 04 改为 2 (十六 进制为 0002H)

主机发送 (十六进制): 01 10 00 03 00 02 04 10 88 00 02 B6 91

从机回应 (十六进制): 01 10 00 03 00 02 B1 C8

回应信息正确说明修改成功,可从键盘上查看 PO. 03, PO. 04 参数已经被修改

MINI 系列高性能矢量变频器用户手册

②发送命令同时修改频率参数

使用 10H 功能码发送命令时,第一个数据为命令值(含义请参看表 3),第二个参数为频率参数。

例如:

(I)、对地址为 1FH 的从机写入启动正转命令及其运转频率给定 1088H (连续运行):

询问帧:

4.11	1511
Address	1FH
Function	10H
会粉光 空山	20H
参数首字址	00H
资料量(word)	00H
页科里(WOId)	02H
资料量 (Byte)	04H
驱动命令	00H
驱列而令	1EH
给定	10H
频率值	88H
CRC CHK Low	67H
CRC CHK High	Е6Н

回应帧:

Address	1FH
Function	10H
会报☆ Ы	20H
参数字址	00H
次业县 (1)	00H
资料量(word)	02H
CRC CHK Low	49H
CRC CHK High	В6Н

(II)、对地址为 1FH 的从机写入启动正转命令及其运转频率给定举例(一次运行):

询问帧:

Address	1FH
Function	10H
会業が合品	20H
参数首字址	00H
次划量 (1)	00H
资料量(word)	02H
资料量(Byte)	04H
驱动命令	00H
	12H
给定	10H
频率值	88H
CRC CHK Low	А7Н
CRC CHK High	E5H

回应帧:

Address	1FH
Function	10H
参数字址	20H
	00Н
资料量(word)	00Н
	02H
CRC CHK Low	49H
CRC CHK High	В6Н

MINI 系列高性能矢量变频器用户手册

(III)、对地址为 1FH 的从机写入启动反转命令及其运转频率给定举例(连续运行):

询问帧:

Address	1FH
Function	10H
4 WL (2 L.)	20H
参数字址	00H
次划量 (00H
资料量(word)	02H
资料量 (Byte)	04H
驱动命令	00H
	2EH
给定	10H
频率值	88H
CRC CHK Low	67H
CRC CHK High	Е9Н

回应帧:

Address	1FH
Function	10H
参数字址	20H
	00H
资料量(word)	00H
	02H
CRC CHK Low	49H
CRC CHK High	В6Н

(4) 其他常用命令举例:

([)、写入停止命令举例:

MINI 系列高性能矢量变频器用户手册

询问帧:

Address	1FH
Function	06H
参数字址	20H
	00H
驱动命令	00H
	01H
CRC CHK Low	40H
CRC CHK High	74H

回应帧:

Address	1FH
Function	06H
参数字址	20H
	00H
驱动命令	00Н
	01H
CRC CHK Low	40H
CRC CHK High	74H

(Ⅱ)、读取监控参数

例如: 从地址为 01H 的从机内部读取监控参数 d-00 (地址为 0D00H) 的值:

询问讯息帧格式:

Address	01H
Function	03H
data address	0DH
	00Н
资料量(word)	00Н
	01H
CRC CHK Low	86H
CRC CHK High	А6Н

回应讯息帧格式:

Address	01H
Function	03H
资料量(Byte)	02H
Data content	10H
	84H
CRC CHK Low	B5H
CRC CHK High	E7H

(III)、读取状态代码

例如: 从驱动器地址为 1FH 的从机读状态信息(地址为 0E00H):

询问讯息帧格式:

Address	1FH
Function	03H
data address	0EH
	00Н
资料量(word)	00Н
	01H
CRC CHK Low	85H
CRC CHK High	5CH

正转、加速时回应讯息:

Address	1FH
Function	03H
资料量(Byte)	02H
Data content	00H
	71H
CRC CHK Low	D0H
CRC CHK High	62H

正转、减速时回应讯息:

Address	1FH
Function	03H
资料量(Byte)	02H
故障号	00H
	B1H
CRC CHK Low	D0H
CRC CHK High	32H

● RTU 模式的检查码 (CRC Check)

检查码由 Address 到 Data content 结束。

其运算规则如下:

步骤 1: 令 16-bit 暂存器 (CRC 暂存器) = FFFFH.

步骤 2: Exclusive OR 第一个 8-bit byte 的讯息指令与低位元 16-bit CRC 暂存器, 做 Exclusive OR , 将结果存入 CRC 暂存器内。

步骤 3: 右移一位 CRC 暂存器,将 0 填入高位元處。

步骤 4: 检查右移的值,如果是 0,将步骤 3 的新值存入 CRC 暂存器内,否則 Exclusive OR A001H 与 CRC 暂存器,将结果存入 CRC 暂存器内。

步骤 5: 重复步骤 3~步骤 4,将 8-bit 全部运算完成。

步骤 6: 重复步骤 2~步骤 5, 取下一个 8-bit 的讯息指令,直到所有讯息指令运算完成。最后,得到的 CRC 暂存器的值,即是 CRC 的检查码。值得注意的是 CRC 的检查码必须交换放置于讯息指令的检查码中。

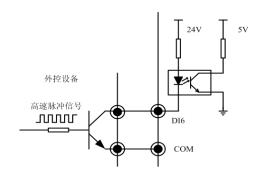
以下为用 C 语言所写的 CRC 检查码运算范例:

unsigned char* data □ // 讯息指令指标

unsigned char length □ // 讯息指令的长度

unsigned int crc_chk(unsigned char* data, unsigned char length)

MINI 系列高性能矢量变频器用户手册

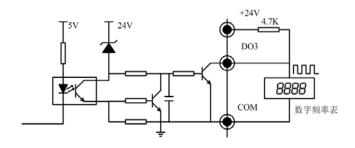

```
{
    int j;
    unsigned int reg_crc=0xffff;
    while(length--)
    {
        reg_crc ^= *data++;
        for(j=0;j<8;j++)
        {
            if(reg_crc & 0x01)
            { /* LSB(b0)=1 */
                reg_crc=(reg_crc>>1) ^ 0Xa001;
        }
        Else
            {
                reg_crc=reg_crc >>1;
            }
        }
}
return reg_crc:// 最后回传 CRC 暂存器的值
}
```

附录二、高速脉冲输入、输出端口使用说明

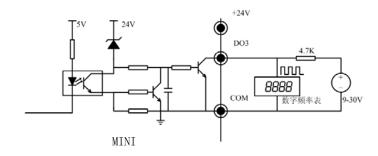
MINI 系列的机器在标准配置的基础上加装选配元件可以通过 DI6 口实现高速脉冲输入,并可通过该端子脉冲信号作为频率指令给定来调节变频器的输出频率。该端口可以识别脉冲的最高频率为 20KHz。该系列机器也可以通过加装选配元件可以通过 DO3 口实现高速脉冲输出,可以通过编程对应变频器的输出频率、输出电压、输出电流等物理量输出 0-20 KHz 的高速脉冲。DO3 口的最大输出电流为50mA,可以使用变频器自身的 24V 电源也可以使用外部电源电源供电,供电电源范围为 9-30V。接线方式如下图所示:

1、 通过 DI6 端口实现高速脉冲输入

该端口仅适用于外部控制信号为 NPN 型的共发射极的开路集电极输入信号,对于电平信号需要通过外接一个 NPN 型的三极管来转换。



DI6 端口接线示意图


2、通过 D03 端口实现高速脉冲输出

该端口可以实现高速脉冲输出功能,但是该端口输出信号为一个开路集电极(0C)信号,为将其转换成为一个电平信号可以通过使用变频器内部提供的24V电源或者使用外部电源加上拉电阻的方法将其转换成为一个电信号。具体接线如下图示:

MINI 系列高性能矢量变频器用户手册

D03 端口使用变频器内部 24V 电源的外部接线示意图 D03 也可以使用外部电源实现高速脉冲的输出,外部电源的供电范围为 9-30V,接线方式如下图所示:

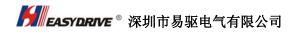
D03 端口使用变频器外部电源的外部接线示意图注: D03 的输出端的上拉电阻的推荐值为 2W 4.7K 的金属膜电阻,为方便客户使用对于该类机器的我司在说明书的包装塑料袋中附送一只。

MINI 系列高性能矢量变频器用户手册

保修协议

- 1. 保修范围仅指变频器本体。
- 正常使用时,变频器在18个月内发生故障或损坏,公司负责保修;
 18个月以上,将收取合理的维修费用。
- 3. 保修期起始时间为我公司制造出厂日期。
- 4. 在18个月内,如发生以下情况,也应收取一定的维修费用:
 - 不按用户手册的操作步骤操作,带来的变频器损坏。
 - 由于水灾、火灾、电压异常等造成的变频器损坏。
 - 接线错误等造成的变频器损坏。
 - 将变频器用于非正常功能时造成的损害。
- 5. 有关服务费用按照实际费用计算。如有合同,以合同优先的原则处理。
- 6. 请你务必保留此卡,并在保修时出示给维修单位。
- 7. 如有问题可直接与供货商联系,也可直接与我公司联系。

FASYDRIVE ® 深圳市易驱电气有限公司


地址:深圳市龙华街道油松东环二路靖轩工业园 11 栋

邮编: 518112 传真: 82447815

http://www.szeasydrive.com

IMINI 系列高性能矢量变频器用户手册

A-1

MINI 系列变频器保修单

用户单位:	
详细地址:	
邮编:	联系人:
电话:	传真:
机器编号:	
功率:	机器型号:
合同号:	购买日期:
服务单位:	
联系人:	电话:
维修员:	电话:
维修日期:	
用户意见及评价:□好□ □较好	□一般 □差
其他意见:	
用户签名:	年 月 日
公司回访记录:	
其他:	

A-2

MINI 系列高性能矢量变频器用户手册

MINI 系列高性能矢量变频器用户手册

A-2

司: 大柏电子科技(上海)有限公司 话: 021-59781297 (直线) 真: 021-33732662 机: 13916183699 址: http://www.db-sh.com

公电传手网